DECdtm Services Reference Manual

System Service Descriptions

OpenVMS DECdtm Services

Reference Manual

6th June 2001

This manual describes the features that OpenVMS DECdtm Services provide to programmers.

	Revision/Update Information
	This is a new manual.

	Software Version:
	OpenVMS DECdtm Version 2.0

Compaq Computer Corporation
Houston, Texas

Copyright © 2001 Compaq Computer Corporation. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of the publisher.

Compaq Computer Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description.

Neither Compaq Computer Corporation nor its employees are responsible for any errors that may appear in this publication. The information in this publication is subject to change without notice.
Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from Compaq or an authorized sublicensor.

The following are trademarks of Compaq Computer Corporation: ACMS, Compaq, DIGITAL, OpenVMS and OpenVMS Cluster.

The following are third-party trademarks:

Oracle Rdb is a registered trademark of Oracle Corporation.

All other trademarks and registered trademarks are the property of their respective holders.

Revision history

	Date
	Author
	Action

	9-Mar-01
	RB
	Revised from DECdtm Services version 1.2 Functional Specification.

	12-Mar-01
	RB
	Add C function prototypes. Fix read-only/write-only errors. Add material from System Service Reference Manual.

	30-Mar-01
	RB
	Fix C function prototypes to match STARLET.H.

	3-Apr-01
	RB
	Include review comments from Compaq.

	5-Apr-01
	RB
	Add C examples.

	6-Jun-01
	RB
	NULL log_id is not legal for $GETDTI. Warn that node name and log ID are required for recovery in cluster. Explain implication of lazy forget by DECdtm. Reduce size of part_name parameters to match DTI$T_PART_NAME. Include review comments from Carrie and Jim. Remove DDTM$M_PROCESS.

Contents

ivContents

viPreface

11 Introduction

21.1.
Single Branch Application

31.2.
Multiple Branch Application

51.3.
Default Transactions

51.4.
Resource Manager Interface

111.5.
Communication Resource Manager Interface

122 Examples

122.1.
$DECLARE_RMW

132.2.
$GET_DEFAULT_TRANS and $JOIN_RMW

132.3.
Event Handler and $ACK_EVENT

152.4.
$GETDTI and $SETDTI

162.5.
$GETDTI (BLISS)

13 System Service Descriptions

2$ABORT_TRANS

7$ABORT_TRANSW

8$ACK_EVENT

16$ADD_BRANCH

20$ADD_BRANCHW

21$CREATE_UID

22$DECLARE_RM

29$DECLARE_RMW

30$END_BRANCH

35$END_BRANCHW

36$END_TRANS

42$END_TRANSW

43$FORGET_RM

47$FORGET_RMW

48$GET_DEFAULT_TRANS

50$GETDTI

58$GETDTIW

59$JOIN_RM

65$JOIN_RMW

66$SET_DEFAULT_TRANS

70$SET_DEFAULT_TRANSW

71$SETDTI

77$SETDTIW

78$START_BRANCH

85$START_BRANCHW

86$START_TRANS

91$START_TRANSW

92$TRANS_EVENT

96$TRANS_EVENTW

97A Event Notification Mechanism

99B Abort Reason Codes

Preface

Intended Audience

This manual is intended for system and application programmers. It presumes that its readers have some familiarity with the OpenVMS programming environment, derived from the OpenVMS Programming Environment Manual and OpenVMS high-level language documentation.

It contains introductory and reference information on the programming interfaces of DECdtm. These interfaces are used by programmers who implement distributed transactions, or when writing resource managers that participate in distributed transactions.

Document Structure

This manual contains the following chapters and appendices:

· Chapter 1 describes how to use the DECdtm system services.

· Chapter 2 provides sample code.

· Chapter 3 provides a reference section for each system service.

· Appendix A describes the event report block passed as a parameter to ASTs declared with the DECdtm services.

· Appendix B lists transaction abort reason codes.

Related Documents

You can find introductory material on DECdtm in the OpenVMS Programming Concepts Manual. See the chapter Using the Distributed Transaction Manager.

The most commonly used DECdtm functions are documented in the OpenVMS System Services Reference Manual. These functions are described with additional information in this manual.

Transaction Processing: Concepts and Techniques by Jim Gray and Andreas Reuter (Morgan Kaufman Publishers, 1993) provides an in-depth background to the concepts of transaction managers and resource managers.

1
Introduction

DECdtm provides basic infrastructure for a distributed transaction processing system.

A transaction is a collection of operations that change the system from one valid state to another. Specifically a transaction has the ACID properties:

	Atomicity
	Either all of the changes for a transaction are made, or none are. If the changes for a transaction cannot be completed, partial changes by the transaction must be undone.

	Consistency
	A transaction is expected to change the system from one consistent state to another.

	Isolation
	Intermediate changes made by program code within a transaction must not be visible to code running as part of any other concurrent transactions.

	Durability
	The changes made by a transaction should survive computer and media failures.

Individual OpenVMS systems within the distributed system are called nodes in this document.

The DECdtm model constructs a distributed transaction processing system from three types of component:

· An Application Program (AP) provides the application-specific code for the system, and defines the boundaries between transactions.

A transaction may be implemented by a single AP running in one process of the distributed system, or it may have multiple AP processes, perhaps running on multiple nodes of the system.

· A Resource Manager (RM) provides ACID operations for one or more data resources on a single node of the system. Oracle Rdb and RMS Journaling are examples of resource managers.

Typically a distributed transaction involves two or more RMs. This might be dissimilar RMs on a single node of the system (for example, Oracle Rdb and RMS Journaling) or it might be RMs on different nodes.

· The Transaction Manager (TM) controls the interaction of APs and RMs, ensuring that they maintain a common view of the state of each transaction (in-progress, committed or aborted).

DECdtm is a TM. Typically it is the sole TM in an OpenVMS-based system, but it also provides services that enable it to interoperate with other TMs.

DECdtm implements a Two-Phase Commit Protocol. This is a simple consensus protocol that allows a collection of participants to reach a single conclusion. Given a list of participants, and a designated coordinator, the protocol proceeds as follows:

	Phase 1:
	The coordinator asks each participant if they can agree to commit. Each participant examines its internal state. If the answer is yes, it does whatever it requires to ensure that it can either commit or abort the transaction, regardless of failures. Typically this requires logging information to disk. It then votes either ‘yes’ or ‘no’.

	Phase 2:
	The coordinator records the outcome on disk: yes, if all the votes were positive, or no if any votes were negative or missing.

The coordinator then informs each participant of the final result.

Note that this protocol reaches a single yes/no decision even if the coordinator or a participant fails. Any failure during phase 1 causes the transaction to be aborted. If the coordinator fails during phase 2, participants wait for it to recover and read the decision from disk. If a participant fails, it can ask the coordinator for the decision on recovery.

While DECdtm is not complex in itself, construction of a full-function resource manager needs knowledge of more techniques than can be given in this manual. Transaction Processing: Concepts and Techniques by Jim Gray and Andreas Reuter (Morgan Kaufman Publishers, 1993) may be helpful.

1.1. Single Branch Application

A sequence of AP operations that occurs within a single transaction is called a branch of the transaction. In the simplest use of DECdtm, a single AP invokes two or more RMs. This case is described in the chapter Using the Distributed Transaction Manager of the OpenVMS Programming Concepts Manual.

The AP uses just three of the DECdtm services: $START_TRANS, $END_TRANS and $ABORT_TRANS. These services are documented in the OpenVMS System Services Reference Manual. They have not changed, but additional information is given in this manual.

$START_TRANS initiates a new transaction and returns a transaction identifier (TID) that is passed to other DECdtm services. $END_TRANS ends a transaction by attempting to commit it, while $ABORT_TRANS ends the transaction by aborting it.

Each RM that takes part in the transaction must obtain the TID. The TID may be passed explicitly by a call from the AP to the RM, or through the default transaction mechanism described in the section Default Transactions below. Internally each RM calls the DECdtm RM Interface services. It will also use the Branch services if parts of the transaction may be executed by different processes or nodes to the AP.

DECdtm aborts a transaction if the process executing a branch terminates. By default, it also aborts a transaction if the current program image terminates.

1.2. Multiple Branch Application

A transaction may have multiple branches. A separate branch is required for each process that takes part in a transaction, regardless of whether the processes run on the same node or on different nodes of the system.

The top branch of the transaction is created by $START_TRANS. A new branch can be requested in various ways:

· By making explicit use of the $ADD_BRANCH and $START_BRANCH services. The application can use any suitable communication technique to pass application calls between the processes and nodes of the system. Such communication is not a function of DECdtm.

· By calling an RM, such as Oracle Rdb, that allows resource processing to be requested on another node of the system.

· By calling transaction processing framework such as ACMS, that allows processing tasks to be requested on other nodes of the system.

Note that in the last two cases, the RM or TP framework make the necessary branch service calls on behalf of the application. There is no difference between the three cases from the viewpoint of DECdtm.

The top branch of a transaction is created by calling $START_TRANS. A subordinate branch is authorized when an existing branch calls $ADD_BRANCH. This returns a globally unique branch identifier (BID). The application passes the BID and TID with an application-specific request to another process or node of the system. $START_BRANCH is then called on the target node to add a new branch to the transaction. A subordinate branch of a transaction may in turn create further branches.

DECdtm can connect the two parts of the transaction together because $ADD_BRANCH specifies the name of the target node while $START_BRANCH specifies the name of the parent node. Either the two nodes must be in the same VMS Cluster or they must be able to communicate via DECnet. DECdtm operation is more efficient within an OpenVMS Cluster. (Note that unless DECdtm operation is confined to a single cluster, each node must be configured with the same DECnet node name as its cluster node name.)

An application may complete its processing within a branch by calling $END_BRANCH.

Note that on $START_BRANCH DECdtm checks that the two nodes are able to communicate, but it does not validate that the branch is authorized until $END_BRANCH is called. At that point an unauthorized branch is aborted without affecting the ability of the authorized branches to commit.

Care is needed if an application attempts to access the same resource from different branches of a transaction. Some RMs can recognize that the branches form part of the same transaction and allow concurrent access to the resource. In that case, just like multiple threads in a process, the application may need to serialize its own operations on the shared resource. Other RMs may lock one branch against another. In that case, the application is likely to deadlock.

Just like multiple threads in a process, multiple branches in a transaction may need to serialize their operations on shared resources. Within an OpenVMS Cluster this could be done using the Lock Manager. Care is needed if two branches outside an OpenVMS Cluster implicitly share a resource, perhaps by each creating a subordinate branch on a third system.

A single process may have multiple branches. For example, a server process may execute parallel operations on behalf of different transactions.

1.2.1. Resource Manager Use of the Branch Services

As defined by DECdtm, an RM provides access to resources on the same process as an AP that has started a transaction or added a branch. However a typical RM implementation may perform work for a transaction in a different process to the original request. In that case it must use the branch services to join the transaction in the worker process.

Similarly, an RM such as Oracle Rdb may provide an application interface that allows remote resources to be accessed. In that case, the RM uses the branch services to add a branch on the local node and start a branch on the remote node.

1.2.2. Branch Synchronization

Processing in all branches of a transaction must be complete before calling $END_TRANS.

Normally DECdtm is used to ensure branch completion. In this case:

· The call to $START_BRANCH does not specify the DDTM$M_BRANCH_UNSYNCHED flag.

· Either $END_BRANCH or $ABORT_TRANS must be called to end the branch.

· $END_BRANCH and $END_TRANS calls are not completed with a success status until all synchronized subordinate branches of the transaction have initiated calls to $END_BRANCH and the top branch has initiated a call to $END_TRANS.

· $END_TRANS and $END_BRANCH are not completed with an SS$_ABORT status until all synchronized branches on the local node have initiated calls to $END_TRANS, $END_BRANCH, or $ABORT_TRANS.

In other words, when a transaction completes successfully, all synchronized branches complete together. When a transaction aborts, all synchronized branches on a single node complete together, but branches on different nodes complete at different times. Note that the use of synchronized branches does not add extra message overhead, because the synchronization events are implicit in the normal DECdtm commitment protocol.

DECdtm branch synchronization is redundant when branch processing is initiated by a synchronous call to a process or remote node, and that call does not return until processing is complete. For example, remote operations may be requested by Remote Procedure Call (RPC). In this case:

· The call to $START_BRANCH specifies the DDTM$M_BRANCH_UNSYNCHED flag.

· The branch must not call $END_BRANCH or $ABORT_TRANS. If the transaction is to be aborted, the branch should return an error status to its superior branch.

See Default Transactions below for a case where unsynchronized branches are not advised.

1.3. Default Transactions

A default transaction TID is maintained for each process. Some DECdtm services act on the default transaction if no transaction is explicitly specified in the call.

The default transaction of a process has two states. It can be:

· Set - the process has a default transaction.

· Clear - the process does not have a default transaction.

The default transaction is cleared during the processing that occurs when the transaction commits or aborts.

Some operations ($START_TRANS, $START_BRANCH) that set the default transaction of a process will fail if the default transaction of the process was not previously clear. Such operations will update the default transaction without error if it is still set but commit or abort processing is already in progress.

The default transaction TID is read by the $GET_DEFAULT_TRANS service.

Some RMs check if a default transaction has been started by the application. If there is none, the requested operation is performed as a single atomic operation. Unsynchronized branches should not be used with such RMs. The problem is that a transaction might be aborted asynchronously (by another branch) before the local branch calls the RM in question. The RM would then perform the operation separately instead of joining the transaction and then receiving an abort notification. This problem cannot occur with a synchronized branch because the default transaction TID is not cleared until $END_BRANCH is called.

1.3.1. Multi-threaded Applications

Since the default transaction TID is per-process, not per-thread, it is preferable to use explicit TIDs in multi-threaded processes.

However the default transaction must be used with RMs that do not provide an interface that allows the AP to specify the TID. In this case the $SET_DEFAULT_TRANS service may be used to set the appropriate TID in each thread. Care must be taken to serialize each sequence of operations that sets and uses the default transaction.

1.4. Resource Manager Interface

A resource manager implements transaction operations on one or more resources.

The RM must have the following characteristics:

· It should implement transactions with the ACID properties on the resources it manages.

This is not a precondition for using DECdtm. For example, some real RMs compromise on isolation for improved performance; but unless it is observed, distributed transactions constructed with DECdtm will not have the ACID properties expected by most applications. See below for circumstances where volatile (non-durable) resources are used.

· It must be able to participate in the two-phase commit protocol. This means that it must be able to store the state of a transaction on disk in phase 1 and subsequently commit or roll back the changes as requested in phase 2.

· It must respond correctly to DECdtm events in the event handler declared by $DECLARE_RM.

· On recovery from an RM or node failure it must call DECdtm to determine the state of each transaction that was in phase 2 at the time of the failure. It must then commit or roll back the transaction as determined by DECdtm.

DECdtm recognizes two elements of an RM:

· There is an RM instance (RMI) for each process that makes RM-related calls to DECdtm.

· There is an RM participant for each transaction in which an RM instance takes part.

The RMI and its RM participants share a single event handler, but each participant may have a different name and context. The name is used to find relevant transactions on recovery. The context is a handle, opaque to DECdtm, which is passed to the event handler and may be used to address RM-specific data.

An RM uses the following DECdtm services during normal execution of transactions:

	$DECLARE_RM
	Creates an RM instance in the current process.

	$JOIN_RM
	Adds an RM participant to a transaction.

	$ACK_EVENT
	Acknowledges an event reported to an RMI or RM participant.

	$FORGET_RM
	Deletes an RMI from the current process.

An RM uses the following DECdtm services during recovery from an RM or system failure:

	$GETDTI
	Gets distributed transaction information. Used to get information about the state of transactions.

	$SETDTI
	Sets distributed transaction information. Used to remove RM participants from a transaction.

1.4.1. Creating RM Instances and Participants

An RMI is created by calling $DECLARE_RM. This specifies an event handler for the RM in the process and returns the RM_ID that is needed to add participants to transactions.

There are two ways to add an RM participant:

· The RM may call $JOIN_RM on the first operation for a new TID.

· The RMI may request transaction start events (DDTM$M_EV_TRANS_START). It calls $ACK_EVENT to join every transaction. If an RM participant finds that it takes no part in a transaction, it can vote SS$_FORGET in phase 1.

In either case, the RM specifies the RM_ID. It also specifies a participant name (possibly defaulted from $DECLARE_RM), which is used as a key to retrieve transaction state information on recovery from an RM or system failure.

· The participant name must have an RM or facility prefix which is unique to the RM.

· Typically the participant name includes an RM-specific name for a group of resources that are recovered as a unit, such as a database or volume.

· The participant name may also include an RM log version (see Performing Recovery, below).

An RM may be designed to be used both with and without DECdtm. In the latter case the RM may perform a single request as a transaction without calling DECdtm. Such RMs must take care when using $GET_DEFAULT_TRANS. A status of SS$_NOCURTID indicates that either no transaction has started, or that a transaction started and then aborted before the RM was called. Therefore the RM interface should provide some way for an AP to specify whether requests are for DECdtm transactions or not. This might be by using an interface function, or by setting a mode switch with a logical name. It is not safe to decide if a DECdtm transaction is required just by checking $GET_DEFAULT_TRANS for a TID. The RM should return an error (for example, SS$_ABORTED) if the AP requires a DECdtm transaction and there is no current TID.

1.4.2. Responding to Events

The primary requirement of an RM participant is that it should respond to the following DECdtm events by calling $ACK_EVENT.

DDTM$K_PREPARE:

Delivered at the start of phase 1. Normally the participant saves on disk information needed to commit or abort the transaction, and responds SS$_PREPARED. This is a vote to commit the transaction.

If the participant has not updated any resources during the transaction, it may respond SS$_FORGET. This is also a vote to commit the transaction. The participant may then release any locks on its resources. The RM will not receive a commit or abort event.

If the participant had an error while the transaction was active, or is unable to save information to disk, it responds with SS$_VETO. This is a vote to abort the transaction. The participant may then abort its transaction and release any locks on its resources.

DDTM$K_ONE_PHASE_COMMIT:

Delivered as an alternative to DDTM$K_PREPARE if there is a single participant and it is in the process that started the transaction.

The participant may commit the transaction and respond with SS$_NORMAL. This optimization eliminates the need for DECdtm to log information and to deliver a commit event.

The participant may respond with SS$_PREPARED to request a regular two-phase commit, or with SS$_VETO to abort the transaction.

DDTM$K_COMMIT:

Delivered when all participants have voted SS$_PREPARED in phase 1.

Normally the participant commits the transaction and responds with SS$_FORGET. This allows DECdtm to discard the transaction from its log. The participant may then release any locks on its resources.

Alternatively the participant may respond SS$_REMEMBER. This is used of the RM encounters an error while committing the transaction. DECdtm retains information about the transaction in its log. The RM must commit the transaction later, as a recovery operation.

DDTM$K_ABORT:

Delivered after $ABORT_TRANS has been called on any node, or when one or more of the participants have responded with SS$_VETO in phase 1.

The participant must abort the transaction and respond with SS$_FORGET. It may then release any locks on its resources.

The above descriptions suggest that a participant drops locks after calling $ACK_EVENT. It could equally well drop locks immediately before calling $ACK_EVENT.

To ensure isolation between transactions (distributed or otherwise), RMs set locks on all resources that are either read or updated, and observe a Two Phase Lock Protocol. This specifies that a transaction must be divided into a phase when locks may be acquired and a following phase when locks may be released. Once any lock is released, no further locks may be acquired. An RM may gain a useful improvement in concurrency by releasing locks on non-updated resources at the end of the active phase, before the transaction is saved on disk.

To obey the two-phase lock protocol for distributed transactions, an RM participant must hold all locks until the start of phase 1. In other words, it must wait for the other participants to complete their active phases of the transaction.

(This is not an absolute requirement by DECdtm. Some RMs allow an application to request reduced isolation between transactions, to get higher concurrency. But if an RM releases locks on non-updated resources before phase 1, distributed transactions constructed with DECdtm will not have the isolation property expected by most applications.)

1.4.3. Aborting a Transaction

If an RM detects an error during a transaction it may return a error status to the AP and allow the AP to decide whether to abort the transaction. For some errors the RM may decide to veto the transaction when it received a request to prepare.

However an RM should not call $ABORT_TRANS itself. A synchronized branch is terminated by $ABORT_TRANS and the decision to terminate the branch should be taken by the AP that started it, not an RM that it called.

DECdtm has no control over the execution of APs. Therefore an RM must be prepared to reject application requests for a transaction after DECdtm has signaled the end of the active phase of the transaction. For example:

· An unsynchronized branch continues execution unaware that another branch has called $ABORT_TRANS.

· An incorrectly coded AP continues to pass a TID after it has called $END_TRANS or $ABORT_TRANS.

· An incorrectly coded AP calls $END_TRANS without waiting for unsynchronized branches to complete.

1.4.4. Performing Recovery

An RM may fail at any time, or the process or node on which it is running may fail. When the RM is restarted, it must clean up the on-disk state of any transaction that was running at the time of the failure. Typically this is done by maintaining an RM-specific log of operations. On recovery the log is examined to find updates that must be undone (for transactions that are being aborted) or redone (for transactions that are being committed). The RM cannot resume normal operation until it has either reacquired locks for in-progress transactions, or completed or aborted them appropriately.

(Logging is a common technique because it performs well, but there are other methods that may be suitable for specific RMs. The key point is that the RM must store sufficient information on disk so that it can abort or complete in-progress transactions following an RM or node restart.)

If the RM failed before voting, the RM can assume that the transaction is to be aborted, since the RM never voted to commit the transaction.

If the RM failed after voting, it must determine the outcome of the transaction from DECdtm. This done using the $GETDTI system service. The RM may select all relevant transactions by a wild-card operation, using the common prefix of the RM participant names. Alternatively it may query the outcome of a specific transaction, using a TID stored in its own log. In either case, the RM process must have SYSPRV privilege to enable it to retrieve and modify transactions.

Two features allow the RM to match its log against the DECdtm log. This is desirable because, for instance, the wrong log might be used if either log has been incorrectly restored from backup following a disk failure. The two features are:

· $DECLARE_RM returns the ID of the DECdtm log on the local node. The RM should save this ID with its own log, and check the value in a call to $GETDTI. This check will fail if either the wrong RM log or the wrong TM log is used.

· The backup sequence number for the RM log may be encoded as a suffix to the RM participant name. On recovery a $GETDTI scan may be used to check if the DECdtm log records participants with more recent backup sequence numbers than expected. This would indicate that an out of date RM log is being recovered.

This check is recommended for RMs that use per-resource logs (rather than a single per-system log), where the risk of an old log being restored is significant.

Typically an RM might perform recovery on a different node of an OpenVMS Cluster to the one where transactions were performed. In this case the RM must record both the node name and the DECdtm log ID in its own log, so that $GETDTI can be instructed to query the DECdtm log for the original node.

There are two transaction states that allow the RM to take action: DTI$K_COMMITTED and DTI$K_ABORTED. The RM may specify that $GETDTI does not complete until the selected transactions have one of these two states.

Alternatively, other states may be returned if the final state of a transaction has not been resolved yet, perhaps because the DECdtm log is unavailable, or DECdtm is still waiting for votes from other RMs or TMs. This allows the RM to continue recovery for other transactions, to take locks for the outstanding un-recovered transactions, and then resume normal operation.

Once an RM has committed or aborted a transaction, it must allow DECdtm to remove the transaction from its log. This is done using the DTI$K_DELETE_RM_NAME function of $SETDTI.

DECdtm implements a presumed-abort optimization. This removes the need for DECdtm to log abort decisions. Therefore if a query for a TID returns SS$_NOSUCHTID, or the TID is missing from the results of a wildcard query, the RM must assume that the transaction has aborted. There is no need to call $SETDTI in this case.

DECdtm lazy-writes the removal of a transaction from its log when the transaction is committed. This means that following a system failure, the DECdtm log may hold commit records for transactions that the RM has forgotten. To prevent such records from eventually filling the log, the RM must occasionally perform recovery by the wild-card scan method described above, instead of querying specific transactions, and remove its association from any committed transaction that is unknown to the RM.

1.4.5. Volatile Resource Manager

An RM may be declared as volatile in $DECLARE_RM if it manages resources that do not need to survive an RM or node failure.

Examples of a volatile RM are:

· Managing a cache of information that is transactionally consistent, but which can be regenerated from information held by another non-volatile RM.

· Implementing a scratchpad for communication between APs during a series of transactions. Changes to the scratchpad should be undone on transaction abort, but the scratchpad does not need to be reconstructed following a system failure.

· Monitoring transaction started, commit and abort events, for performance information or perhaps to cleanup volatile state, without managing a real resource.

Declaring an RM as volatile removes the need for DECdtm to log information about RM participants. By definition, the RM does not need to perform recovery after a failure, and does not call $GETDTI.

1.4.6. Modifying the DECdtm Log

On recovery, RMs are expected to wait until each transaction state can be resolved as committed or aborted. During this time they may be unavailable for new operations, or they may hold locks that block the normal functioning of applications.

When DECdtm is used within an OpenVMS Cluster, any node can access the DECdtm log for recovery, provided that the log is configured on a clustered disk. However, if the log is on a failed node outside the cluster, or communication to the node has failed, or the disk holding the log has failed, applications may be blocked indefinitely.

In this scenario it may be preferable to intervene manually than to tolerate an unavailable system. The DTI$K_MODIFY_STATE function of $SETDTI allows the state of an in-doubt transaction to be changed in a DECdtm log. The DTI$K_DELETE_TRANSACTION allows a transaction to be removed from a DECdtm log.

These changes might well be made using the Log Manager Control Program (LMCP) REPAIR command rather than calling $SETDTI directly. Note that intervention of this type is for emergency use and is likely to break the consistency of distributed resources. Application-specific updates to resources may be needed to restore consistency.

1.4.7. Transaction Class

An AP may specify a transaction class parameter to $START_TRANS or $ADD_BRANCH. This is passed as a string to the RM event handler. The mechanism is provided so that an RM may monitor transaction activity for suitably labeled transactions or branches. Its use is optional.

1.5. Communication Resource Manager Interface

A Communication Resource Manager (CRM) is a special resource manager that acts as a gateway between DECdtm and another TM. Typically the other TM would be on a non-OpenVMS system. A CRM could also be written to link two DECdtm systems using an otherwise unsupported communication mechanism such TCP/IP.

A CRM in a subordinate branch of a DECdtm transaction is indistinguishable from a normal RM. It responds to DECdtm events normally, except that internally it forwards the events to the remote TM instead of dealing with them directly.

A CRM may create a DECdtm subordinate branch using the $JOIN_RM service as follows:

· Sets the DDTM$M_COORDINATOR flag to indicate that it is a coordinator on behalf of another TM.

· Specifies a new TID. Note that no call to $START_TRANS is required.

· Calls $START_BRANCH with the branch ID returned by $JOIN_RM. The CRM instance node should be specified as the transaction manager node name (tm_name). Note that no call to $ADD_BRANCH is required.

· Uses the $TRANS_EVENT service to prepare, commit or abort a transaction.

The new TID is derived from the remote TM and must be a Universally Unique Identifier (UUID). If the remote TM does not use UUIDs for its TIDs, the CRM would have to generate a new TID (using the $CREATE_UID service) and maintain a mapping between remote TM TIDs and DECdtm TIDs. This needs care, because if multiple branches of the same transaction are created, the same DECdtm TID should be used on all branches. Otherwise RMs may detect spurious lock collisions between branches of the same transaction.

2
Examples

The C examples are taken from the TAOS (Transactional Array of Strings) sample resource manager. It implements a file holding an array of string values that are updated by transactions. The sample is too large to reproduce in this manual, but is available in SYS$EXAMPLES.

TAOS uses three in-memory data structures:

· taos: This holds global information about the string array, including the rm_id. It is passed an opaque handle to applications using TAOS.

· part: This is created when TAOS participates in a transaction. It holds the TID and is specified as the rm_context to $JOIN_RM. The taos structure holds a list of part structures indexed by TID.

· res: This is created when a TAOS resource (a string) is referenced or updated in a transaction. The part structure holds a list of res structures indexed by array element number.

The C examples use the following OpenVMS include files:

 #include <ddtmdef.h>

 #include <ddtmmsgdef.h>

 #include <descrip.h>

 #include <dtidef.h>

 #include <iosbdef.h>

 #include <ssdef.h>

 #include <starlet.h>

 #include <stsdef.h>

2.1. $DECLARE_RMW

This shows the declaration of a resource manager to DECdtm.

struct taos {
 uint tmLogId[4]; /* transaction manager log ID */
 uint efn;
 /* event flag for TAOS operations */
 uint rmId;

/* resource manager ID */

 struct dsc$descriptor_s resNameDsc; /* resource name */
 char
resName[24]; /* "TAOS____" + array ID */
};

int taos_Open(...) {

 int status;

 IOSB iosb;
 BOOL declaredRm = FALSE;

 int events = DDTM$M_EV_PREPARE|DDTM$M_EV_COMMIT|DDTM$M_EV_ABORT;

 status = sys$declare_rmw(pTaos->efn, 0, &iosb, NULL, 0,

 &pTaos->rmId, &HandleEvent, &pTaos->resNameDsc, NULL,

 0, pTaos->tmLogId, events);

 if (SUCCESS(status))

 status = iosb.iosb$w_status;

 if (SUCCESS(status))

 declaredRm = TRUE;

 return status;

}

2.2. $GET_DEFAULT_TRANS and $JOIN_RMW

This shows how to check for a default transaction, and join the resource manager to a transaction.

The function GetParticipantData() (not shown here) searches a list of part structures for an existing TID. If one is not found, an new part structure is allocated.

int taos_Write(.., uint pTid[4]) {

 int status;

 /* get transaction ID */

 if (pTid != NULL)

 CopyUid(tid, pTid);

 else {

 status = sys$get_default_trans(tid);
 if (FAILURE(status))

 return status;

 }

 /* if this is a new transaction, join it */
 if (GetParticipantData(pTaos, tid, &pPart)) {

 status = sys$join_rmw(pTaos->efn, 0, &iosb, NULL, 0,

 pTaos->rmId, tid, NULL, pPart);
 if (SUCCESS(status))

 status = iosb.iosb$w_status;

 if (FAILURE(status))

 return status;
 }

}

2.3. Event Handler and $ACK_EVENT

This shows the event handler specified to DECdtm with $DECLARE_RM.

static int HandleEvent(DDTM$R_REPORTDEF *pReport) {

 struct taos

*pTaos;

 switch (pReport->ddtm$l_event_type) {

 case DDTM$K_PREPARE:

 Prepare(pReport);

 break;

 case DDTM$K_ABORT:

 Abort(pReport);

 break;

 case DDTM$K_ONE_PHASE_COMMIT:

 OnePhaseCommit(pReport);

 break;

 case DDTM$K_COMMIT:

 Commit(pReport);

 break;

 return SS$_NORMAL;

}

/* Abort the transaction */

static void Abort(DDTM$R_REPORTDEF *pReport) {

 struct part *pPart = (struct part *) pReport->ddtm$l_rm_context;

 /* Undo the transaction here, using the list of resources
 * attached to the part structure.
 */

 /* DECdtm can forget the transaction */

 sys$ack_event(0, pReport->ddtml_report_id, SS_FORGET);
}

/* Prepare transaction (phase 1 commit) */

static void Prepare(DDTM$R_REPORTDEF *pReport) {

 int status = SS$_NORMAL;
 BOOL updates = FALSE;

 /* Save updates on disk, using the list of resources attached to
 * the part structure. Set updates if there are any. Set status
 * on error.

 /* vote on transaction */

 if (FAILURE(status))

 status = SS$_VETO; /* can't prepare, so abort tran */

 else if (!updates)

 status = SS$_FORGET; /* read-only transaction */

 else

 status = SS$_PREPARED;
/* ready to commit or abort */

 sys$ack_event(0, pReport->ddtm$l_report_id, status);
}

/* Commit transaction (phase 2) */

static void Commit(DDTM$R_REPORTDEF *pReport) {

 int status = SS$_NORMAL;

 /* Make updates permanent and visible to other users here.
 * Set status on error.
 */

 if (SUCCESS(status))

 status = SS$_FORGET;
 /* DECdtm can forget transaction */

 else {

 /* We can't commit the transaction yet. We must ask DECdtm to
 * remember the transaction, and we must terminate operations
 * until a successful recovery is performed.
 */

 pTaos->status = status;

 status = SS$_REMEMBER;

 }

 /* acknowledge event */

 sys$ack_event(0, pReport->ddtm$l_report_id, status);
}

/* Prepare and commit transaction in a single phase */

static void OnePhaseCommit(DDTM$R_REPORTDEF *pReport) {

 int status = SS$_NORMAL;

 /* Combine operations from Prepare() and Commit() here.
 * Set status on error.
 */

 /* report outcome to DECdtm */

 if (FAILURE(status))

 status = SS$_VETO; /* aborted */

 else

 status = SS$_NORMAL; /* committed */

 sys$ack_event(0, pReport->ddtm$l_report_id, status);
}

2.4. $GETDTI and $SETDTI

This shows the use of $GETDTI on recovery to determine the final state of a transaction. $SETDTI is used to remove the resource manager from the transaction.

/* Recover the state of a prepared resource after a failure */

RecoverString(...) {

 int status;

 IOSB iosb;
 uint context = 0; /* context from $GETDTI */

 int retlen;

 Int state;
 /* transaction state */

 DTIRECDEF dti = {0};

 ITMLST3_DECL (search, 1);

 ITMLST3_ITEM (search, 0, DTI$_SEARCH_RESOLVED_STATE,
 DTI$S_TRANSACTION_INFORMATION, &dti, 0);

 ITMLST3_END (search);

 ITMLST3_DECL (result, 1);

 ITMLST3_ITEM (result, 0, DTI$_TRANSACTION_INFORMATION,
 DTI$S_TRANSACTION_INFORMATION, &dti, &retlen);

 ITMLST3_END (result);

 /* get final state of transaction */

 dti.dti$b_part_name_len = 0;
/* no RM name specified */

 CopyUid((uint *) dti.dti$t_tid, pTaos->stringBuf.tid);

 status = sys$getdtiw(pTaos->efn, DDTM$M_FULL_STATE, &iosb, NULL, 0,

 pTaos->tmLogId, &context, &search, &result);

 if (SUCCESS(status))

 status = iosb.iosb$w_status;

 if (SUCCESS(status))

 state = dti.dti$b_state;

 /* treat forgotten TID as presumed abort */

 if (status == SS$_NOSUCHTID) {

 state = DTI$K_ABORTED;

 status = SS$_NORMAL;

 }

 if (SUCCESS(status)) {

 switch (state) {

 case DTI$K_COMMITTED:

 /* Make update permanent and visible here.

 * Set status on error. */

 break;

 case DTI$K_ABORTED:

 /* Undo the update here. Set status on error. */

 break;
 }

 }

 if (SUCCESS(status)) {

 /* allow DECdtm to remove this RM from the transaction */

 status = sys$setdtiw(pTaos->efn, 0, &iosb, NULL, 0, &context,

 DTI$K_DELETE_RM_NAME, &result);

 }

}

2.5. $GETDTI (BLISS)

The following BLISS program demonstrates how a simple resource manager may perform recovery following a system failure. In the example, a $GETDTI is executed on behalf of a remote node (MYNODE) specifying a transaction identifier, named resource manager, participant log identifier and transaction manager log identifier.

When the $GETDTI finishes processing, the recovery logic in the resource manager performs it own recovery and issues a $SETDTI to remove the resource manager name from the transaction.

MODULE RECOVER_TRANSACTION (MAIN=MAIN)=

BEGIN

 LIBRARY’SYS$LIBRARY:STARLET’;

 FORWARD ROUTINE

 MAIN,

 AST_COMPLETION_ROUTINE : NOVALUE;

 ROUTINE MAIN =

 BEGIN

 OWN

 STATUS

 : LONG UNSIGNED,

 IOSB

 : VECTOR [4,WORD],

 SEARCH_CONTEXT

 : LONG UNSIGNED

 INITIAL (0),

 PART_LOG_ID

 : $BBLOCK [DTI$S_PART_LOG_ID]

 INITIAL (REP DTI$S_PART_LOG_ID OF BYTE (0)),

 TM_LOG_ID

 : $BBLOCK [DTI$S_PART_LOG_ID]

 INITIAL (REP DTI$S_PART_LOG_ID OF BYTE (0)),

 TID

 : $BBLOCK [DTI$S_TID]

 INITIAL (REP DTI$S_TID OF BYTE (0)),

 SEARCH_LIST

 : $ITMLST_DECL (ITEMS=2),

 ITEM_LIST

 : $ITMLST_DECL (ITEMS=1),

 TRANS_INFO

 : $BBLOCK [DTI$S_TRANSACTION_INFORMATION];

 BIND

 SEARCH_NODE_NAME = UPLIT (%ASCII’MYNODE’),

 RESOURCE_MANAGER = UPLIT (%ASCII’FRED’);

 LITERAL

 SEARCH_NODE_NAME_LENGTH = %CHARCOUNT (’MYNODE’),

 RESOURCE_MANAGER_LENGTH = %CHARCOUNT (’FRED’);

 ! Resource manager opens recovery log and reads first resolved

 ! recovery record. The information in the recovery record

 ! should contain the transaction identifier, resource manager

 ! log identifier and transaction manager log identifier. This

 ! information is written into the transaction information

 ! record.

 CH$MOVE (DTI$S_TID,

 TID,

 TRANS_INFO [DTI$T_TID]);

 CH$MOVE (DTI$S_PART_LOG_ID,

 PART_LOG_ID,

 TRANS_INFO [DTI$T_PART_LOG_ID]);

 CH$MOVE (RESOURCE_MANAGER_LENGTH,

 .RESOURCE_MANAGER,

 TRANS_INFO [DTI$T_PART_NAME]);

 TRANS_INFO [DTI$B_PART_NAME_LEN] = RESOURCE_MANAGER_LENGTH;

 ! The search item list is initialised with a node

 ! name and transaction information record.

 $ITMLST_INIT (ITMLST=SEARCH_LIST,

 (ITMCOD=DTI$_SEARCH_AS_NODE,

 BUFADR=.SEARCH_NODE_NAME,

 BUFSIZ=SEARCH_NODE_NAME_LENGTH),

 (ITMCOD=DTI$_SEARCH_RESOLVED_STATE,

 BUFADR=TRANS_INFO,

 BUFSIZ=DTI$S_TRANSACTION_INFORMATION));

 ! The item list is initialised to return a transaction

 ! information record containing the resolved state of the

 ! transaction.

 $ITMLST_INIT (ITMLST=ITEM_LIST,

 (ITMCOD=DTI$_TRANSACTION_INFORMATION,

 BUFADR=TRANS_INFO,

 BUFSIZ=DTI$S_TRANSACTION_INFORMATION));

 ! A $GETDTI is now performed to return the state of the

 ! transaction and the node name.

 STATUS = $GETDTIW (EFN=10,

 FLAGS=DDTM$M_FULL_STATE,

 IOSB=IOSB,

 ASTADR=AST_COMPLETION_ROUTINE,

 ASTPRM=0,

 CONTXT=SEARCH_CONTEXT,

 LOG_ID=TM_LOG_ID,

 SEARCH=SEARCH_LIST,

 ITMLST=ITEM_LIST);

 ! If the transaction was committed then perform resource manager

 ! recovery and then delete the resource manager from the

 ! transaction.

 IF .TRANS_INFO [DTI$B_STATE] EQLU DTI$K_COMMITTED THEN

 STATUS = $SETDTIW (EFN=10,

 FLAGS=0,

 IOSB=IOSB,

 ASTADR=AST_COMPLETION_ROUTINE,

 ASTPRM=0,

 CONTXT=SEARCH_CONTEXT,

 FUNC=DTI$K_DELETE_RM_NAME,

 ITMLST=ITEM_LIST);

 RETURN .STATUS

 END;

 ROUTINE AST_COMPLETION_ROUTINE (ASTPRM : LONG UNSIGNED) : NOVALUE =

 BEGIN

 RETURN;

 END;

END

ELUDOM

3
System Service Descriptions

$ABORT_TRANS

Ends a transaction by aborting it.

Format

SYS$ABORT_TRANS [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid] ,[reason] ,[bid]]

C Prototype

int sys$abort_trans (unsigned int efn, unsigned int flags, struct _iosb *iosb, ...);

Arguments

efn

	OpenVMS usage:
	ef_number

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Number of the event flag that is set when the service completes. If this argument is omitted, event flag 0 is set.

flags

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Flags specifying options for the service. The flags argument is a longword bit mask in which each bit corresponds to an option flag. The $DDTMDEF macro defines symbolic names for these option flags, and those currently defined are shown in Table 3–4. All undefined bits must be 0. If this argument is omitted, no flags are set.

Table 3–4 $ABORT_TRANS Option Flags

	Flag Name
	Description

	DDTM$M_NOWAIT
	Set this flag to indicate that the service should return to the caller without waiting for final "cleanup". Note that ABORT_TRANSW with the DDTM$M_NOWAIT flag set is not equivalent to $ABORT_TRANS. The former does not return until the operation has been initiated. The latter returns as soon as the operation has been queued. The full range of status values may be returned from a nowait call.

	DDTM$M_SYNC
	Specifies successful synchronous completion by returning SS$_SYNCH. When SS$_SYNCH is returned, the AST routine is not called, the event flag is not set, and the I/O status block is not filled in.

iosb

	OpenVMS usage:
	io_status_block

	type:
	quadword (unsigned)

	access:
	write only

	mechanism:
	by reference

The I/O status block in which the following information is returned:

· The completion status of the service. This is returned as a condition value (see the Returns section for the condition values returned).

· An abort reason code that gives one reason why the transaction aborted, if the completion status of the service is SS$_NORMAL.

Note that if there are multiple reasons for the transaction aborting, this may not be the same as the abort reason code passed in the reason argument. The DECdtm transaction manager returns one of the reasons in the I/O status block. It may return different reasons to different branches of the transaction.

For example, if the call to $ABORT_TRANS gives DDTM$_ABORTED as the reason and the transaction timeout expires at about the same time as the call to $ABORT_TRANS, then either the DDTM$_TIMEOUT or DDTM$_ABORTED code may be returned in the I/O status block.

The $DDTMMSGDEF macro defines symbolic names for abort reason codes. Those currently defined are shown in Appendix A.

The following diagram shows the structure of the I/O status block.

[image: image1.wmf]

astadr

	OpenVMS usage:
	ast_procedure

	type:
	procedure entry mask

	access:
	call without stack unwinding

	mechanism:
	by reference

The AST routine executed when the service completes, if SS$_NORMAL is returned in R0. The astadr argument is the address of the entry mask of this routine. The routine is executed in the access mode of the caller.

astprm

	OpenVMS usage:
	user_arg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The AST parameter passed to the AST routine specified by the astadr argument.

tid

	OpenVMS usage:
	trans_id

	type:
	octaword (unsigned)

	access:
	read only

	mechanism:
	by reference

The identifier (TID) of the transaction to be aborted.

If this argument is omitted, $ABORT_TRANS aborts the default transaction of the calling process.

reason

	OpenVMS usage:
	cond_value

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

A code that gives the reason why the application is aborting the transaction. This must be a valid abort reason code.

The $DDTMMSGDEF macro defines symbolic names for abort reason codes, and those currently defined are shown in Appendix A. The default value for this argument is DDTM$_ABORTED.

bid

	OpenVMS usage:
	branch_id

	type:
	octaword (unsigned)

	access:
	read only

	mechanism:
	by reference

The identifier (BID) of the branch that is aborting the transaction.

The default value of this argument is 0, which is the BID of the branch that started the transaction.

Description

The $ABORT_TRANS system service:

· Initiates abort processing for the specified transaction, if it has not already been initiated.

If abort processing has not already been initiated, the DECdtm transaction manager instructs the resource managers to abort (roll back) the transaction operations so that none of those operations ever take any effect. It delivers an abort event to each RM participant in the transaction that is associated with an RMI that requested abort events.

· Removes the specified branch from the specified transaction in this process.

Preconditions for the successful completion of $ABORT_TRANS include:

· If the BID is non-zero, the calling process must contain the specified branch of the specified transaction.

· If the BID is non-zero, the tid argument must not be omitted (if you explicitly pass the BID, you must also explicitly pass the TID).

$ABORT_TRANS may fail for various reasons, including:

· These preconditions were not met.

· There has already been a call to $ABORT_TRANS, $END_TRANS, or $END_BRANCH for the specified branch.

Postconditions on successful completion of $ABORT_TRANS are shown in Table 3–3. $ABORT_TRANS will not complete successfully (that is, the event flag will not be set, the AST routine will not be called, and the I/O status block will not be filled in) until all branches on the local node have been removed from the transaction. Thus this call to $ABORT_TRANS cannot complete successfully until every authorized and synchronized branch on the local node has initiated a call to $END_TRANS, $END_BRANCH, or $ABORT_TRANS.

$ABORT_TRANS must deliver notification ASTs to resource managers participating in the transaction. Therefore it will not complete successfully while the calling process is either:

· In an access mode that is more privileged than the DECdtm calls made by any resource manager participating in the transaction. RMS journaling calls DECdtm in executive mode. Oracle Rdb and Oracle CODASYL DBMS call DECdtm in user mode.

· At AST level in the same access mode as the least privileged DECdtm calls made any resource manager participating in the transaction.

For example, if Oracle Rdb is a participant in the transaction, $ABORT_TRANS will not complete successfully while the calling process is in supervisor, executive, or kernel mode, or while the calling process is at AST level.

Note that successful completion of $ABORT_TRANS is not indefinitely postponed by network failure.

Table 3–3 Postconditions When $ABORT_TRANS Completes Successfully

	Postcondition
	Meaning

	The transaction is ended.
	If DDTM$M_NOWAIT is clear:

· The TID of the transaction is invalid; calls to any DECdtm system services except $GETDTI and $SETDTI that pass that TID will fail, and calls to resource managers that pass that TID will fail.

· The transaction no longer has any application or RM participants on the local node.

· All communications about the transaction between the local DECdtm transaction manager and other DECdtm transaction managers are finished (including the final "cleanup" acknowledgment).

	The outcome of the transaction is abort.
	None of the operations of the transaction will ever take any effect.

	DECdtm quotas are returned.
	If DDTM$M_NOWAIT is clear, all quotas allocated for the transaction by calls on the local node to DECdtm services are now returned.

	The transaction is not the default transaction of the calling process.
	If DDTM$M_NOWAIT is clear, then, if the transaction was the default transaction of the calling process, it is now no longer.

There is also a wait form of the service, $ABORT_TRANSW.

Required Privileges

None

Required Quotas

ASTLM

A.1.1. Condition Values Returned

	SS$_NORMAL
	If returned in R0, the request was successfully queued. If returned in the I/O status block, the service completed successfully.

	SS$_SYNCH
	The service completed successfully and synchronously (returned only if the DDTM$M_SYNC flag is set).

	SS$_ACCVIO
	An argument was not accessible to the caller.

	SS$_BADPARAM
	Either the options flags were invalid, or the tid argument was omitted and the bid argument was not zero.

	SS$_BADREASON
	The abort reason code was invalid.

	SS$_CURTIDCHANGE
	The tid argument was omitted and a call to change the default transaction of the calling process was in progress.

	SS$_EXASTLM
	The process AST limit (ASTLM) was exceeded.

	SS$_ILLEFC
	The event flag number was invalid.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_NOCURTID
	An attempt was made to abort the default transaction (the tid argument was omitted) but the calling process did not have a default transaction.

	SS$_NOLOG
	The local node did not have a transaction log.

	SS$_NOSUCHBID
	The calling process did not contain the branch identified by the BID passed in the bid argument (possibly because there has already been a call to $ABORT_TRANS, $END_TRANS, or $END_BRANCH for that branch).

This error is returned only if the bid argument is not zero.

	SS$_NOSUCHTID
	The calling process did not contain any branches in the transaction.

	SS$_TPDISABLED
	The TP_SERVER process was not running on the local node.

	SS$_WRONGSTATE
	Commit processing for the transaction had already started. This can occur if bid is zero or the specified branch was unsynchronized.

$ABORT_TRANSW

Ends a transaction by aborting it.

$ABORT_TRANSW always waits for the request to complete before returning to the caller. Apart from this, it is identical to $ABORT_TRANS.

Do not call $ABORT_TRANSW from AST level, or from an access mode that is more privileged than the DECdtm calls made by any resource manager participant in the transaction. If you do, the $ABORT_TRANSW service will wait indefinitely.

Format

SYS$ABORT_TRANSW [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid] ,[reason] ,
 [bid]]

C Prototype

int sys$abort_transw (unsigned int efn, unsigned int flags, struct _iosb *iosb, ...);

$ACK_EVENT

Acknowledges an event reported to an RM participant or RMI.

Format

SYS$ACK_EVENT [flags] ,report_id ,report_reply [,[reason] ,[beftime] ,[afttime] ,
 [part_name] ,[rm_context], [timout]]

C Prototype

int sys$ack_event (unsigned int flags, unsigned int report_id,
 int report_reply , …);

Arguments

flags

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Reserved to Compaq. This argument must be zero.

report_id

	OpenVMS usage:
	identifier

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The identifier of the event report being acknowledged by this call to $ACK_EVENT.

report_reply

	OpenVMS usage:
	cond_value

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Acknowledgment code appropriate to the event being acknowledged by this call to $ACK_EVENT. The following tables give the valid acknowledgment codes for the various events. The title of each table gives the event, and in brackets, its event code. The event code is passed in the event report block (see Appendix A).

Acknowledgment of prepare or one-phase commit events gives a vote on the outcome of the transaction – either to commit or abort. The tables for these events have a column labeled "Vote". A "yes" vote means that the RM participant wishes to commit the transaction, while a "no" vote means that the RM participant cannot commit. The transaction will be committed only if all participants vote “yes”.

Table 3–5 Replies to an Abort Event Report (DDTM$K_ABORT)

	report_reply
	Description

	SS$_FORGET
	RM participant guarantees that the effects of its transaction operations will never be detected by any transaction that commits.

Side effects:

On successful completion of the call to $ACK_EVENT, the RM participant is removed from the transaction , and the ASTLM quota consumed by the call to $JOIN_RM or $ACK_EVENT that added it to the transaction is returned.

DECdtm also releases any application threads that are waiting for the transaction to end (necessary but not sufficient condition). Any call to $END_TRANS, $END_BRANCH, or $ABORT_TRANS on a node for a transaction whose outcome is abort is not allowed to complete until after all abort event reports delivered to RM participants on that node have been acknowledged.

Table 3–6 Replies to a Commit Event Report (DDTM$K_COMMIT)

	report_reply
	Description

	SS$_FORGET
	Allows the DECdtm transaction manager to forget the RM participant.

The RM participant must not give this reply until it has either:

· Completed the commit processing for its transaction operations.

· Safely stored enough information to ensure that this commit processing will inevitably complete (for example, logged that the transaction has committed in a private log).

If the RM participant is associated with a nonvolatile RMI, then at some point after receiving this reply, the DECdtm transaction manager will delete the name of the RM participant from the transaction database. Once SS$_FORGET replies have been given for all the RM participants in a transaction, that transaction ceases to be recoverable (some time after all these replies are given, the transaction is deleted from the transaction database). This means that a subsequent call to $GETDTI could lead the resource manager to wrongly assume that the transaction had aborted.

If there is a failure after this reply is sent, a recoverable resource manager must be able to rely on its own safely stored information to determine if any of the commit processing associated with the RM participant needs to be restarted.

Side effects:

On successful completion of the call to $ACK_EVENT, the RM participant is removed from the transaction , and the ASTLM quota consumed by the call to $JOIN_RM or $ACK_EVENT that added it to the transaction is returned.

DECdtm also releases any application threads that are waiting for the transaction to end (necessary but not sufficient condition). Any call to $END_TRANS or $END_BRANCH on a node for a transaction whose outcome is commit cannot complete successfully until all commit event reports delivered to RM participants on that node have been acknowledged.

	SS$_REMEMBER
	The RM participant requires that the DECdtm transaction manager stores its name and the outcome of the transaction (commit) in the transaction database.

Note that for an RM participant associated with a volatile RMI, SS$_REMEMBER is treated in the same way as SS$_FORGET.

Side effects:

On successful completion of the call to $ACK_EVENT, the RM participant is removed from the transaction , and the ASTLM quota consumed by the call to $JOIN_RM or $ACK_EVENT that added it to the transaction is returned.

DECdtm also releases any application threads that are waiting for the transaction to end (necessary but not sufficient condition). Any call to $END_TRANS or $END_BRANCH on a node for a transaction whose outcome is commit cannot complete successfully until all commit event reports delivered to RM participants on that node have been acknowledged.

Table 3–7 Replies to a One-phase Commit Event Report (DDTM$K_ONE_PHASE_COMMIT)

	report_reply
	Vote
	Meaning

	SS$_NORMAL
	Yes
	The RM participant decided to commit the transaction, and has safely stored enough information to be able to keep this guarantee even if there is a recoverable failure, caused, for example, by a node crash.

The DECdtm transaction manager does not log any information about the transaction.

Side effects:

On successful completion of the call to $ACK_EVENT, the RM participant is removed from the transaction, the transaction is ended, and the ASTLM quota consumed by the call to $JOIN_RM or $ACK_EVENT that added the RM participant to the transaction is returned.

DECdtm also allows the call to $END_TRANS to complete (necessary and sufficient condition).

	SS$_PREPARED
	Yes
	RM participant decided not to accept the opportunity to decide the outcome of the transaction. It has performed only prepare processing for the transaction and requires full two-phase commit processing. This is equivalent to voting SS$_PREPARED on a prepare event.

The RM participant can either commit or abort the operations of the transaction, and guarantees that it will abide by the DECdtm transaction manager’s decision on whether the transaction (and therefore these operations) are committed or aborted.

A recoverable resource manager must not give this vote until it has safely stored enough information to be able to keep this guarantee even if there is a recoverable failure, caused, for example, by a node crash.

The DECdtm transaction manager will decide the outcome of the transaction, then inform the resource manager of the decision with a commit or abort event report delivered to the RM participant (assuming that it is associated with an RMI that requested these event reports).

Note that an application or other failure could cause the DECdtm transaction manager to decide to abort the transaction.

	SS$_VETO
	No
	RM participant requires that the transaction be aborted and guarantees that the effects of that transaction on its resources will never be detected by any transaction that commits. The reason argument gives the reason why the RM participant is aborting the transaction.

The DECdtm transaction manager does not log any information about the transaction.

Side effects:

On successful completion of the call to $ACK_EVENT, the RM participant is removed from the transaction, the transaction is ended, and the ASTLM quota consumed by the call to $JOIN_RM or $ACK_EVENT that added the RM participant to the transaction is returned.

DECdtm also allows the call to $END_TRANS to complete (necessary and sufficient condition).

Table 3–8 Replies to a Prepare Event Report (DDTM$K_PREPARE)

	report_reply
	Vote
	Meaning

	SS$_FORGET
	Yes
	This is called a read-only vote. It is an optimization that allows an RM participant to vote "yes" and not receive a commit or abort event report.

Side effects:

On successful completion of the call to $ACK_EVENT, the RM participant is removed from the transaction , and the ASTLM quota consumed by the call to $JOIN_RM or $ACK_EVENT that added it to the transaction is returned.

	SS$_PREPARED
	Yes
	The RM participant can either commit or abort the operations of the transaction, and guarantees that it will abide by the DECdtm transaction manager’s decision on whether the transaction (and therefore these operations) are committed or aborted. In other words, the RM participant guarantees that the behavior of its resources will never be inconsistent with that decision, in so far as that behavior is detected by any transactions that commit.

A recoverable resource manager must not give this vote until it has safely stored enough information to be able to keep this guarantee even if there is a recoverable failure, caused, for example, by a node crash.

The DECdtm transaction manager will decide the outcome of the transaction, then inform the resource manager of the decision with a commit or abort event report delivered to the RM participant (assuming that it is associated with an RMI that requested these event reports) or, in the event of a failure, using the resource manager’s recovery mechanism.

	SS$_VETO
	No
	RM participant requires that the transaction be aborted. The reason argument gives the reason why the RM participant is aborting the transaction.

The RM participant guarantees that the effects of its transaction operations will never be detected by any transaction that commits.

Side effects:

The DECdtm transaction manager will deliver an abort event report for the transaction to the RM participant.

Table 3–9 Replies to a Default Transaction Started Event Report (DDTM$K_STARTED_DEFAULT)

	report_reply
	Description

	SS$_NORMAL
	Adds a new RM participant running in the calling process to the transaction to which a new branch is being added. The new RM participant is associated with the RMI to which the default transaction started event was reported. The part_name and rm_context arguments specify the name of the new RM participant and its context.

Side effects:

The postconditions on successful completion of the call to $ACK_EVENT are the same as those for $JOIN_RM.

DECdtm also allows the call to $START_TRANS or $START_BRANCH that is adding the new branch to complete (necessary but not sufficient condition). That call cannot complete successfully until all default transaction-started event reports delivered to RMIs in that process have been acknowledged.

	SS$_FORGET
	Acknowledgment of the event report.

Side effects:

DECdtm allows the call to $START_TRANS or $START_BRANCH that is adding the new branch to complete (necessary but not sufficient condition).

That call cannot complete successfully until all default transaction-started event reports delivered to RMIs in that process have been acknowledged.

Table 3–10 Replies to a Nondefault Transaction Started Event Report (DDTM$K_STARTED_NONDEFAULT)

	report_reply
	Description

	SS$_NORMAL
	Adds a new RM participant running in the calling process to the transaction to which a new branch is being added. The new RM participant is associated with the RMI to which the nondefault transaction started event was reported. The part_name and rm_context arguments specify the name of the new RM participant and its context.

Side effects:

The postconditions on successful completion of the call to $ACK_EVENT are the same as those for $JOIN_RM.

DECdtm also allows the call to $START_TRANS or $START_BRANCH that is adding the new branch to complete (necessary but not sufficient condition). That call cannot complete successfully until all default transaction-started event reports delivered to RMIs in that process have been acknowledged.

	SS$_FORGET
	Acknowledgment of the event report.

Side effects:

DECdtm allows the call to $START_TRANS or $START_BRANCH that is adding the new branch to complete (necessary but not sufficient condition).

That call cannot complete successfully until all default transaction-started event reports delivered to RMIs in that process have been acknowledged.

reason

	OpenVMS usage:
	cond_value

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

A code that gives the reason why the RM participant is aborting the transaction.

This argument is ignored unless the value in the report_reply argument is SS$_VETO and the event being acknowledged is a prepare or one-phase commit event.

The $DDTMMSGDEF macro defines symbolic names for abort reason codes, and those currently defined are shown in Appendix B. The default value for this argument is DDTM$_VETOED.

beftime

	OpenVMS usage:
	utc_date_time

	type:
	octaword (unsigned)

	access:
	read only

	mechanism:
	by reference

Reserved to Compaq.

afttime

	OpenVMS usage:
	utc_date_time

	type:
	octaword (unsigned)

	access:
	read only

	mechanism:
	by reference

Reserved to Compaq.

part_name

	OpenVMS usage:
	char_string

	type:
	character-coded_text_string

	access:
	read only

	mechanism:
	by descriptor—fixed-length string descriptor

The name of the new RM participant that is added to the transaction by this call to $ACK_EVENT. This argument is ignored unless the event being acknowledged is of type Transaction Started and the value of the report_reply argument is SS$_NORMAL.

If this argument is omitted (the default) or its value is zero, the name of the new RM participant is the same of that of the RMI with which it is associated.

The string passed in this argument must be no longer than 32 characters.

rm_context

	OpenVMS usage:
	userarg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The context associated with the new RM participant. This argument is ignored unless the value of the report_reply argument is SS$_NORMAL, and the event being acknowledged is of type Transaction Started.

The context of the new RM participant is passed in the event reports subsequently delivered to that RM participant.

The context is used to pass information specific to the new RM participant from the main line code into the event handler specified in the call to $DECLARE_RM that created the RMI with which the new RM participant is associated.

If this argument is omitted (the default) or is zero, the context associated with the new RM participant is the same of that of the RMI with which it is associated.

timout

	OpenVMS usage:
	date_time

	type:
	quadword (unsigned)

	access:
	read only

	mechanism:
	by reference

Reserved to Compaq.

Description

The $ACK_EVENT system service:

· Acknowledges an event report delivered by the DECdtm transaction manager to an RM participant or RMI in the calling process.

Every event report delivered by the DECdtm transaction manager to an RM participant or RMI must be acknowledged by a call to $ACK_EVENT specifying the identifier of the event report. This acknowledgment need not come from AST context. The caller of $ACK_EVENT must be in the same access mode as or a more privileged access mode than that in which the event handler AST was delivered.

The DECdtm transaction manager may deliver multiple event reports to an RMI, but delivers only one event report at a time to an RM participant. For example, if a prepare event report has been delivered to an RM participant, and the transaction is aborted while the RM participant is doing its prepare processing, then the DECdtm transaction manager does not deliver an abort event report to that RM participant until it has acknowledged the prepare event report by a call to $ACK_EVENT.

After acknowledging the event report, the RMI or RM participant should no longer access the event report block.

· Adds a new RM participant to a transaction, if the event being acknowledged is of type Transaction Started and the value of the report_reply argument is SS$_NORMAL.

Note that the new RM participant cannot be the coordinator of the transaction.

· Removes an RM participant from a transaction if the event being acknowledged is one of the events shown in the following table and the report_reply argument is as shown in this table:

	Event
	report_reply

	Abort
	SS$_FORGET

	Commit
	SS$_FORGET or SS$_REMEMBER

	Prepare
	SS$_FORGET or SS$_VETO

	One-phase commit
	SS$_NORMAL or SS$_VETO

Required Privileges

None.

Required Quotas

None.

Condition Values Returned

	SS$_NORMAL
	The request was successful.

	SS$_ACCVIO
	An argument was not accessible to the caller.

	SS$_BADPARAM
	Either the options flags were invalid, or the reply passed in the report_reply argument was invalid for the type of event

being acknowledged.

	SS$_BADREASON
	The abort reason code passed in the reason argument was invalid.

	SS$_EXASTLM
	The process AST limit (ASTLM) was exceeded.

	SS$_ILLEFC
	The event flag number was invalid.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_INVBUFLEN
	The string passed in the part_name argument was too long.

	SS$_NOSUCHREPORT
	Either an event report with the specified report identifier had not been delivered to any RM participant or RMI in the calling process, or that event report had already been acknowledged.

	SS$_WRONGACMODE
	The caller was in a less privileged access mode than that of the RMI whose event handler was used to deliver the event report that is being acknowledged by this call to $ACK_EVENT.

$ADD_BRANCH

Authorizes a new branch to be added to a transaction.

Format

SYS$ADD_BRANCH [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,tid ,tm_name ,bid

C Prototype

int sys$add_branch (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int tid [4], void *tmname, unsigned int bid [4]);

Arguments

efn

	OpenVMS usage:
	ef_number

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Number of the event flag that is set when the service completes. If this argument is omitted, event flag 0 is set.

flags

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Flags specifying options for the service. The flags argument is a longword bit mask in which each bit corresponds to an option flag. The $DDTMDEF macro defines symbolic names for these option flags, and those currently defined are shown in Table 3–14. All undefined bits must be 0. If this argument is omitted, no flags are set.

Table 3–14 $ADD_BRANCH Option Flags

	Flag Name
	Description

	DDTM$M_SYNC
	Specifies successful synchronous completion by returning SS$_SYNCH. When SS$_SYNCH is returned, the AST routine is not called, the event flag is not set, and the I/O status block is not filled in.

iosb

	OpenVMS usage:
	io_status_block

	type:
	quadword (unsigned)

	access:
	write only

	mechanism:
	by reference

The I/O status block in which the completion status of the service is returned as a condition value. See the Returns section for the condition values returned.

The following diagram shows the structure of the I/O status block.

[image: image2.png]15

Reserver! by Cornpacy Condition Value,

Reserved by Cormpary

astadr

	OpenVMS usage:
	ast_procedure

	type:
	procedure entry mask

	access:
	call without stack unwinding

	mechanism:
	by reference

The AST routine executed when the service completes, if SS$_NORMAL is returned in R0. The astadr argument is the address of the entry mask of this routine. The routine is executed in the same access mode as that of the caller of the $ADD_BRANCH service.

astprm

	OpenVMS usage:
	user_arg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The AST parameter that is passed to the AST routine specified by the astadr argument.

tid

	OpenVMS usage:
	trans_id

	type:
	octaword (unsigned)

	access:
	read only

	mechanism:
	by reference

The identifier (TID) of the transaction for which a new branch is to be authorized.

tm_name

	OpenVMS usage:
	char_string

	type:
	character-coded text string

	access:
	read only

	mechanism:
	by descriptor—fixed-length string descriptor

The name of the node on which the new branch is running.

Note that this cannot be a cluster alias.

bid

	OpenVMS usage:
	branch_id

	type:
	octaword (unsigned)

	access:
	write only

	mechanism:
	by reference

An octaword in which the identifier (BID) of the new branch is returned.

No other call to $ADD_BRANCH on any node ever returns the same BID value.

Description

The $ADD_BRANCH system service:

· Authorizes a new branch to be added to the specified transaction.

· If the tm_name argument specifies a remote node, $ADD_BRANCH checks that there is a communications link between the DECdtm transaction manager on that node and the DECdtm transaction manager on the local node.

The preconditions for the successful completion of $ADD_BRANCH is:

· The calling process must contain at least one branch of the specified transaction.

$ADD_BRANCH may fail for several reasons, including:

· The preconditions was not satisfied.

· An abort event has occurred for the transaction.

· A call to $END_TRANS to end the transaction is in progress and it is now too late to authorize a new branch for the transaction.

· The node specified by the tm_name argument was a remote node and a failure was detected by the IPC mechanism.

Postconditions on successful completion of $ADD_BRANCH are shown in Table 3–13.

Table 3–13 Postconditions When $ADD_BRANCH Completes Successfully

	Postcondition
	Meaning

	A new branch is authorized for the transaction and its identifier is returned.
	The identifier (BID) of the new branch is returned in the octaword to which the bid argument points.

$ADD_BRANCH uses the $CREATE_UID system service to generate the BID. No other call to $ADD_BRANCH or $CREATE_UID on any node ever returns the same BID value.

	The transaction cannot commit until the new branch has been added to the transaction by a matching call to $START_BRANCH.
	See the description of $START_BRANCH for the definition of a "matching" call to $START_BRANCH.

There is also a wait form of the service, $ADD_BRANCHW.

Required Privileges

None

Required Quotas

BYTLM, ASTLM

Condition Values Returned

	SS$_NORMAL
	If returned in R0, the request was successfully queued. If returned in the I/O status block, the service completed successfully.

	SS$_SYNCH
	The service completed successfully and synchronously (returned only if the DDTM$M_SYNC flag is set).

	SS$_ACCVIO
	An argument was not accessible to the caller.

	SS$_BADPARAM
	The options flags were invalid.

	SS$_EXASTLM
	The process AST limit (ASTLM) was exceeded.

	SS$_EXQUOTA
	The job buffered I/O byte limit quota (BYTLM) was exceeded.

	SS$_ILLEFC
	The event flag number was invalid.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_INVBUFLEN
	The string passed in the tm_name argument was longer than 256 characters.

	SS$_NOSUCHTID
	The calling process did not contain any branches in the transaction.

	SS$_WRONGSTATE
	The transaction was in the wrong state for the attempted operation because either an abort event has occurred for the transaction, or a call to $END_TRANS to end the transaction is in progress and it is now too late to authorize new branches for the transaction.

	Any IPC status
	An error has occurred while attempting to communicate with the node specified by the tm_name argument. The set of IPC statuses includes the set of DECnet errors.

$ADD_BRANCHW

Authorizes a new branch to be added to a transaction.

$ADD_BRANCHW always waits for the request to complete before returning to the caller. Apart from this, it is identical to $ADD_BRANCH.

Format

SYS$ADD_BRANCHW [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,tid ,tm_name ,bid

C Prototype

int sys$add_branchw (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int tid [4], void *tmname, unsigned int bid [4]);

$CREATE_UID

Generates a Universally Unique Identifier.

Format

SYS$CREATE_UID uid

C Prototype

int sys$create_uid (unsigned int uid [4]);

Arguments

uid

	OpenVMS usage:
	uid

	type:
	octaword (unsigned)

	access:
	write only

	mechanism:
	by reference

Address of an octaword in which the identifier (TID) of the default transaction of the calling process is returned.

Description

Generates a identifier that is unique across all computer systems.

Required Privileges

None.

Required Quotas

None.

Condition Values Returned

	SS$_NORMAL
	The request was successful.

	SS$_ACCVIO
	An argument was not accessible to the caller.

$DECLARE_RM

Creates a new resource manager instance (RMI) in the calling process.

Format

SYS$DECLARE_RM [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,rm_id ,event_handler ,
 [part_name] [,[rm_context] ,[acmode] ,[tm_log_id] ,
 [event_mask]]

C Prototype

int sys$declare_rm (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int *rm_id,
 int (*event_handler)(__unknown_params), …);

Arguments

efn

	OpenVMS usage:
	ef_number

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Number of the event flag that is set when the service completes. If this argument is omitted, event flag 0 is set.

flags

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Flags specifying options for the service. The flags argument is a longword bit mask in which each bit corresponds to an option flag. The $DDTMDEF macro defines symbolic names for these option flags, and those currently defined are shown in Table 3–18. All undefined bits must be 0. If this argument is omitted, no flags are set.

Table 3–18 $DECLARE_RM Option Flags

	Flag Name
	Description

	DDTM$M_SYNC
	Specifies successful synchronous completion by returning SS$_SYNCH. When SS$_SYNCH is returned, the AST routine is not called, the event flag is not set, and the I/O status block is not filled in.

	DDTM$M_VOLATILE
	Set this flag for the new RMI to be volatile. With this flag set, the DECdtm transaction manager will not log information about any RM participants associated with the new RMI. Resource managers that never perform recovery should set this flag.

If this flag is clear, the new RMI is not volatile. The DECdtm transaction manager will log the following information about each RM participant associated with the new RMI:

· The name of the RM participant.

· The identifier (TID) of the transaction in which it is participating.

If this flag is clear and a recoverable failure occurs, such as a system crash, the resource manager can use the $GETDTI system service to query the transaction log to determine the outcome of the transactions in which it was participating before the failure occurred.

iosb

	OpenVMS usage:
	io_status_block

	type:
	quadword (unsigned)

	access:
	write only

	mechanism:
	by reference

The I/O status block in which the completion status of the service is returned as a condition value. See the Returns section for the condition values returned.

The following diagram shows the structure of the I/O status block.

[image: image3.png]15

Reserver! by Cornpacy Condition Value,

Reserved by Cormpary

astadr

	OpenVMS usage:
	ast_procedure

	type:
	procedure entry mask

	access:
	call without stack unwinding

	mechanism:
	by reference

The AST routine that is executed when the service completes, if SS$_NORMAL is returned in R0. The astadr argument is the address of the entry mask of this routine. The routine is executed in the same access mode as that of the caller of the $DECLARE_RM service.

astprm

	OpenVMS usage:
	user_arg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The AST parameter that is passed to the AST routine specified by the astadr argument.

rm_id

	OpenVMS usage:
	identifier

	type:
	longword (unsigned)

	access:
	write only

	mechanism:
	by reference

OpenVMS usage: identifier

Longword in which the identifier (RM_ID) of the new RMI is returned. This identifier is unique within the calling process at any time.

event_handler

	OpenVMS usage:
	ast_procedure

	type:
	procedure entry mask

	access:
	call without stack unwinding

	mechanism:
	by reference

The new RMI’s event handler. This routine is called to report an event to the new RMI or one of its RM participants. The event_handler argument is the address of the entry mask of this routine.

This routine is called as an AST delivered by the DECdtm transaction manager.

The AST is executed in the access mode specified by the acmode argument. The AST parameter is the address of a DECdtm event report block that contains an event report. See Appendix A for the format of the event report block.

part_name

	OpenVMS usage:
	char_string

	type:
	character-coded_text_string

	access:
	read only

	mechanism:
	by descriptor—fixed-length string descriptor

The name of the new RMI. This is:

· The default name of its RM participants, used when a call to $JOIN_RM or $ACK_EVENT that adds one of these RM participants to a transaction does not specify the name of the new RM participant.

When an RM participant associated with the new RMI is added to a transaction by a call to $JOIN_RM or $ACK_EVENT that has a zero part_name argument, then that RM participant inherits its name from the RMI (the name of that RM participant is the same as the name of the RMI).

· The string passed in the participant name field of Transaction Started event reports delivered to the new RMI.

This string must be no longer than 32 characters.

If this argument is omitted, the name of the new RMI is the null string.

rm_context

	OpenVMS usage:
	userarg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The context of the new RMI. This is:

· The default context of its RM participants, used when a call to $JOIN_RM or $ACK_EVENT that adds one of these RM participants to a transaction does not specify the context of the new RM participant.

When an RM participant associated with the new RMI is added to a transaction by a call to $JOIN_RM or $ACK_EVENT that has a zero rm_context argument, then that RM participant inherits its context from the RMI (the context of that RM participant is the same as the context of the RMI).

· The string passed in the context field of Transaction Started event reports delivered to the new RMI.

If this argument is omitted, the context of the new RMI is 0.

acmode

	OpenVMS usage:
	access_mode

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The access mode of the new RMI. This is:

· The access mode at which the ASTs delivered to its event handler are to be executed.

· The least privileged access mode that the caller must be in to call $ACK_EVENT to acknowledge an event report delivered to the new RMI or to its RM participants.

· The least privileged access mode that the caller must be in to delete the new RMI by calling $FORGET_RM.

· The least privileged access mode that the caller must be in to call $JOIN_RM to add a new RM participant associated with the new RMI.

· The most privileged access mode of new branches that this RMI is interested in, if the event_mask argument requests events of type Transaction Started.

The call to $START_TRANS or $START_BRANCH that adds a new branch to a transaction specifies the access mode of that transaction within this process. The DECdtm transaction manager reports a Transaction Started event to the new RMI only if the access mode of the transaction is the same as or less privileged than the access mode of the new RMI.

For example, if the access mode of the new RMI is supervisor, it will receive a Transaction Started event when a branch of the calling process is added to a transaction only if the access mode of that transaction is user or supervisor.

The access mode of the new RMI is the least privileged of:

· The access mode of the caller.

· The access mode specified by the acmode argument.

If this argument is omitted, the access mode of the new RMI is the same as the access mode of the caller.

tm_log_id

	OpenVMS usage:
	DECnet_uid

	type:
	octaword (unsigned)

	access:
	write only

	mechanism:
	by reference

The globally unique identifier of the transaction log for the local node. This identifier is used during resource manager recovery to check that the correct DECdtm transaction manager log is used (see $GETDTI).

event_mask

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Requests the types of event to be reported to the new RMI and to its RM participants. The only type of event that can be reported to the new RMI is a Transaction Started event (a default or non-default transaction started event). The following types of event can be reported to its RM participants:

· Abort events

· Commit events

· One-phase commit events

· Prepare events

The event_mask argument is a longword bit mask that is the logical OR of each bit set, where each bit corresponds to an event. The $DDTMDEF module defines a symbolic name for each flag bit, as described in Table 3–19. All undefined bits must be 0.

If this argument is omitted, the following events are requested:

· Abort events

· Commit events

· One-phase commit events

· Prepare events

Table 3–19 $DECLARE_RM Event Selection Flags

	Flag Name
	Description

	DDTM$M_EV_NOFLAGS
	Specifies that no events are to be reported to the RMI or its participants. An error is returned if this flag is set in combination with any other flag.

	DDTM$M_EV_ABORT
	Specifies that abort events are to be reported to the RM participants associated with the new RMI.

If this flag is set, when an abort event occurs for a transaction, the DECdtm transaction manager delivers an abort event report to each RM participant in the transaction that is associated with the new RMI.

	DDTM$M_EV_COMMIT
	Specifies that commit events are to be reported to the RM participants associated with the new RMI.

If this flag is set, when the DECdtm transaction manager decides that the outcome of a transaction is commit, it delivers a commit event report to each RM participant in the transaction that is associated with the new RMI.

	DDTM$M_EV_PREPARE
	Specifies that prepare events are to be reported to the RM participants associated with the new RMI.

If this flag is set, when the DECdtm transaction manager initiates the commit protocol (in response to a call to $END_TRANS) to determine the outcome of a transaction, it reports a prepare event to each RM participant in the transaction that is associated with the new RMI.

The acknowledgment of a prepare event is a vote on the outcome of the transaction (see $ACK_EVENT).

	DDTM$M_EV_TRANS_START
	Specifies that events of type Transaction Started are to be reported to the new RMI. Events of type Transaction Started are:

· Default transaction started events.

· Non-default transaction-started events.

If this flag is set, the DECdtm transaction manager will report one of these events to the new RMI whenever a new branch in the calling process is added to a transaction, provided that the access mode of the new branch is not more privileged than the access mode of the new RMI. The acknowledgment of that event report may add a new RM participant associated with the new RMI to that transaction. See the description of the acmode argument for a discussion of access modes.

Description

The $DECLARE_RM system service creates a new resource manager instance (RMI) in the calling process and returns its identifier.

Preconditions for successful completion of $DECLARE_RM include:

· The local node must have a DECdtm transaction log.

· The TP_SERVER process must be running on the local node.

When $DECLARE_RM completes successfully, a new RMI is created in the calling process, and its identifier is returned. The new RMI has no RM participants. They are added to transactions by subsequent calls to $JOIN_RM or $ACK_EVENT.

DECdtm events for the RMI and its RM participants, as specified by event_mask, are reported to the specified event handler.

If an RM does not specify DDTM$M_EV_PREPARE, its RM participants do not have a vote on the outcome of their transactions. The DECdtm transaction manager assumes that their votes are "yes".

If an RM does not specify DDTM$M_EV_ABORT or DDTM$M_EV_COMMIT, DECdtm forgets the involvement of the RM participant in the transaction when the corresponding event occurs.

A one-phase commit event is reported to an RM participant if:

· Both the DDTM$M_EV_PREPARE and DDTM$M_EV_COMMIT flags are set.

· It is the only RM participant in the transaction.

· It is running in the process that started the transaction (the process that called $START_TRANS).

The new RMI is deleted from the calling process:

· On termination of the calling process.

· On termination of the current image, if the access mode of the RMI was user mode..

· On successful completion of a call to $FORGET_RM in the calling process that passes its identifier.

There is also a wait form of the service, $DECLARE_RMW.

Required Privileges

None.

Required Quotas

BYTLM, ASTLM

Condition Values Returned

	SS$_NORMAL
	If returned in R0, the request was successfully queued. If returned in the I/O status block, the service completed successfully.

	SS$_SYNCH
	The service completed successfully and synchronously (returned only if the DDTM$M_SYNC flag is set).

	SS$_ACCVIO
	An argument was not accessible to the caller.

	SS$_BADPARAM
	Either the options flags were invalid or the event mask flags were invalid.

	SS$_EXASTLM
	The process AST limit (ASTLM) was exceeded.

	SS$_ILLEFC
	The event flag number was invalid.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_INVBUFLEN
	The string passed in the part_name argument was too long.

	SS$_NOLOG
	The local node did not have a transaction log.

	SS$_TPDISABLED
	The TP_SERVER process was not running on the local node.

$DECLARE_RMW

Creates a new resource manager instance (RMI) in the calling process.

$DECLARE_RMW always waits for the request to complete before returning to the caller. Apart from this, it is identical to $DECLARE_RM.

Format

SYS$DECLARE_RMW [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,rm_id ,
 event_handler ,[part_name] [,[rm_context] ,[acmode] ,
 [tm_log_id] ,[event_mask]]

C Prototype

int sys$declare_rmw (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int *rm_id,
 void (*event_handler)(__unknown_params), …);

$END_BRANCH

Removes a branch from a transaction and returns the outcome of the transaction.

Format

SYS$END_BRANCH [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,tid ,bid

C Prototype

int sys$end_branch (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int tid [4], unsigned int bid [4]);

Arguments

efn

	OpenVMS usage:
	ef_number

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Number of the event flag set when the service completes. If this argument is omitted, event flag 0 is set.

flags

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Flags specifying options for the service. The flags argument is a longword bit mask in which each bit corresponds to an option flag. The $DDTMDEF macro defines symbolic names for these option flags, and those currently defined are shown in Table 3–24. All undefined bits must be 0. If this argument is omitted, no flags are set.

Table 3–24 $END_BRANCH Option Flags

	Flag Name
	Description

	DDTM$M_SYNC
	Specifies successful synchronous completion by returning SS$_SYNCH. When SS$_SYNCH is returned, the AST routine is not called, the event flag is not set, and the I/O status block is not filled in.

	DDTM$M_NOWAIT
	Indicates that the service should return to the caller without waiting for final cleanup. Note that $END_BRANCHW with the DDTM$M_NOWAIT flag set is not equivalent to $END_BRANCH. The latter returns when the operation has been queued. The former does not return until the operation has been initiated. The full range of status values may be returned from a nowait call.

	DDTM$M_SYNC
	Specifies that successful synchronous completion is to be indicated by returning SS$_SYNCH.

When SS$_SYNCH is returned, the AST routine is not called, the event flag is not set, and the I/O status block is not filled in.

iosb

	OpenVMS usage:
	io_status_block

	type:
	quadword (unsigned)

	access:
	write only

	mechanism:
	by reference

The I/O status block in which the following information is returned:

· The completion status of the service. This is returned as a condition value (see the Returns section for the condition values returned).

· The outcome of the transaction.

If the service completes successfully, the outcome of the transaction is commit. If it returns SS$_ABORT, the outcome of the transaction is abort.

· An abort reason code that gives one reason why the transaction aborted, if the completion status of the service is SS$_ABORT. The $DDTMMSGDEF macro defines symbolic names for these abort reason codes, and those currently defined are shown in Appendix B.

The following diagram shows the structure of the I/O status block.

[image: image4.wmf]

astadr

	OpenVMS usage:
	ast_procedure

	type:
	procedure entry mask

	access:
	call without stack unwinding

	mechanism:
	by reference

The AST routine executed when the service completes, if SS$_NORMAL is returned in R0. The astadr argument is the address of the entry mask of this routine. The routine is executed in the same access mode as that of the caller of the $END_BRANCH service.

astprm

	OpenVMS usage:
	user_arg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The AST parameter passed to the AST routine specified by the astadr argument.

tid

	OpenVMS usage:
	trans_id

	type:
	octaword (unsigned)

	access:
	read only

	mechanism:
	by reference

The identifier (TID) of the transaction from which the branch is to be removed.

bid

	OpenVMS usage:
	branch_id

	type:
	octaword (unsigned)

	access:
	read only

	mechanism:
	by reference

The identifier (BID) of the branch to be removed from the transaction.

Description

The $END_BRANCH system service:

· Removes the specified branch from the specified transaction.

· Returns the outcome of the specified transaction.

If $END_BRANCH completes successfully, the outcome of the transaction is commit. If it returns SS$_ABORT, the outcome is abort.

Preconditions for the successful completion of $END_BRANCH are:

· The calling process must contain the specified branch of the specified transaction.

· The specified branch must be a synchronized branch.

· The access mode of the caller must be the same as or more privileged than that of any branch of the specified transaction in this process. (See $START_BRANCH and $START_TRANS.)

$END_BRANCH may fail for the following reasons:

· Preconditions were not met.

· An abort event has occurred for the transaction.

Postconditions on successful completion of $END_BRANCH are listed in Table 3–22.

Table 3–22 Postconditions When $END_BRANCH Completes Successfully

	Postcondition
	Meaning

	The branch that started the transaction has initiated a call to $END_TRANS.
	The completion of $END_BRANCH is delayed until this occurs. If the transaction was not started on the local node, the successful completion of $END_BRANCH may be indefinitely postponed by network failure.

	Every other authorized and synchronized branch of the transaction has initiated a call to $END_BRANCH.
	The completion of $END_BRANCH is delayed until this occurs.

	The transaction is ended.
	With the result that:

· The TID of the transaction is invalid (calls to any DECdtm system services except $GETDTI and $SETDTI that pass that TID will fail, and calls to resource managers that pass that TID will fail).

· The transaction no longer has any application or RM participants on the local node.

· All communications about the transaction between the local DECdtm transaction manager and other DECdtm transaction managers are finished (including the final "cleanup" acknowledgments).

	The outcome of the transaction is commit.
	All the transaction operations by authorized branches that completed successfully before $END_TRANS was called will take effect. That is, the effects of these operations will be made permanent.

Operations by any unauthorized branches will be aborted. (An unauthorized branch is one without a matching $ADD_BRANCH.)

	DECdtm quotas are returned.
	All quotas allocated for the transaction by calls on the local node to DECdtm services are now returned.

	The transaction is not the default transaction of the calling process.
	If the transaction was the default transaction of the calling process, then it is now no longer.

Postconditions on completion with the SS$_ABORT error are shown in Table 3–23. $END_BRANCH does not complete with this error until all branches on the local node have been removed from the transaction. Thus this call to $END_BRANCH cannot complete with the SS$_ABORT error until after every authorized and synchronized branch on the local node has initiated a call to $END_TRANS, $END_BRANCH, or $ABORT_TRANS.

Table 3–23 Postconditions When $END_BRANCH Completes With the SS$_

ABORT Error

	Postcondition
	Meaning

	The transaction is ended.
	If DDTM$M_NOWAIT is clear:

· The TID of the transaction is invalid (calls to any DECdtm system services except $GETDTI and $SETDTI that pass that TID will fail, and calls to resource managers that pass that TID will fail).

· The transaction no longer has any application or RM participants on the local node.

· All communications about the transaction between the local DECdtm transaction manager and other DECdtm transaction managers are finished (including the final cleanup acknowledgments).

	The outcome of the transaction is abort.
	None of the operations of the transaction will ever take any effect.

The I/O status block contains one reason why the transaction was aborted. If there are multiple reasons for the transaction aborting, the DECdtm transaction manager returns one of the reasons in the I/O status block. It may return different reasons to different branches in the transaction.

For example, if the transaction timeout expires and a communications link fails, then either the DDTM$_TIMEOUT or DDTM$_COMM_FAIL abort reason code may be returned.

	DECdtm quotas are returned.
	If DDTM$M_NOWAIT is clear, all quotas allocated for the transaction by calls on the local node to DECdtm services are now returned.

	The transaction is not the default transaction of the calling process.
	If DDTM$M_NOWAIT is clear and the transaction was the default transaction of the calling process, then it is so no longer.

There is also a wait form of the service, $END_BRANCHW.

Required Privileges

None

Required Quotas

ASTLM

Condition Values Returned

	SS$_NORMAL
	If returned in R0, the request was successfully queued. If returned in the I/O status block, the service completed successfully.

	SS$_SYNCH
	The service completed successfully and synchronously (returned only if the DDTM$M_SYNC flag is set).

	SS$_ABORT
	The transaction aborted (see the abort reason code returned in the I/O status block for one reason why the transaction aborted).

	SS$_ACCVIO
	An argument was not accessible to the caller.

	SS$_BADPARAM
	Either the options flags were invalid or the tid argument was omitted but the bid argument was not zero.

	SS$_BRANCHENDED
	Either the calling process had already called $END_BRANCH or $ABORT_TRANS specifying that BID, or the branch was unsynchronized.

	SS$_EXASTLM
	The process AST limit (ASTLM) was exceeded.

	SS$_ILLEFC
	The event flag number was invalid.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_NOSUCHBID
	The calling process did not contain the branch identified by the BID passed in the bid argument.

	SS$_NOSUCHTID
	The calling process did not contain any branches in the transaction.

	SS$_WRONGACMODE
	The access mode of the caller was less privileged than that of a branch of the specified transaction in this process.

$END_BRANCHW

Removes a branch from a transaction and returns the outcome of the transaction.

$END_BRANCHW always waits for the request to complete before returning to the caller. Apart from this, it is identical to $END_BRANCH.

Format

SYS$END_BRANCHW [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,tid, bid

C Prototype

int sys$end_branchw (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int tid [4], unsigned int bid [4]);

$END_TRANS

Ends a transaction by attempting to commit it, and returns the outcome of the transaction.

Format

SYS$END_TRANS [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid]]

C Prototype

int sys$end_trans (unsigned int efn, unsigned int flags, struct _iosb *iosb, ...);

Arguments

efn

	OpenVMS usage:
	ef_number

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Number of the event flag that is set when the service completes. If this argument is omitted, event flag 0 is set.

flags

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Flags specifying options for the service. The flags argument is a longword bit mask in which each bit corresponds to an option flag. The $DDTMDEF macro defines symbolic names for these option flags, and those currently defined are shown in Table 3–29. All undefined bits must be 0. If this argument is omitted, no flags are set.

Table 3–29 $END_TRANS Option Flags

	Flag Name
	Description

	DDTM$M_SYNC
	Specifies successful synchronous completion by returning SS$_SYNCH. When SS$_SYNCH is returned, the AST routine is not called, the event flag is not set, and the I/O status block is not filled in.

	DDTM$M_NOWAIT
	Indicates that the service should return to the caller without waiting for final cleanup. Note that $END_TRANSW with the DDTM$M_NOWAIT flag set is not equivalent to $END_TRANS. The former does not return until the operation has been initiated, while $END_TRANS returns when the operation has been queued..

The full range of status values may be returned from a nowait call.

iosb

	OpenVMS usage:
	io_status_block

	type:
	quadword (unsigned)

	access:
	write only

	mechanism:
	by reference

The I/O status block in which the following information is returned contains:

· The completion status of the service, returned as a condition value (see the Returns section for the condition values returned).

· The outcome of the transaction.

If the service completes successfully, the outcome of the transaction is commit. If it returns SS$_ABORT, the outcome of the transaction is abort.

· An abort reason code that gives one reason why the transaction aborted, if the completion status of the service is SS$_ABORT.

The $DDTMMSGDEF macro defines symbolic names for these abort reason codes. Those currently defined are shown in Appendix B.

The following diagram shows the structure of the I/O status block.

[image: image5.png]15

Reserver! by Cornpacy

Condition Value.

Abort reason code

astadr

	OpenVMS usage:
	ast_procedure

	type:
	procedure entry mask

	access:
	call without stack unwinding

	mechanism:
	by reference

The AST routine that is executed when the service completes, if SS$_NORMAL is returned in R0. The astadr argument is the address of the entry mask of this routine. The routine is executed in the access mode of the caller.

astprm

	OpenVMS usage:
	user_arg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The AST parameter that is passed to the AST routine specified by the astadr argument.

tid

	OpenVMS usage:
	trans_id

	type:
	octaword (unsigned)

	access:
	read only

	mechanism:
	by reference

The identifier (TID) of the transaction to be ended.

If this argument is omitted, $END_TRANS ends the default transaction of the calling process.

Description

The $END_TRANS system service ends a transaction by attempting to commit it, and returns the outcome of the transaction. The service:

· Initiates the commit protocol to determine whether the outcome of the specified transaction is commit or abort.

Warning: Do not call $END_TRANS while a transaction operation is in progress. If there are any such operations in progress when $END_TRANS is called, an unintended set of operations could be committed. This could invalidate application data managed by the resource managers participating in the transaction.

Provided that no abort event has occurred, the DECdtm transaction manager delivers a prepare event to each RM participant in the transaction that:

· Is associated with an RMI that requested prepare events.

· Did not set the DDTM$M_COORDINATOR flag when it was added to the transaction.

If there is only one such RM participant, the DECdtm transaction manager delivers a one-phase commit event to that RM participant, not a prepare event.

· Returns the outcome of the specified transaction.

If $END_TRANS completes successfully, the outcome of the transaction is commit. If it returns SS$_ABORT, the outcome is abort.

· Removes from the specified transaction the branch that started the transaction.

Preconditions for the successful completion of $END_TRANS are that:

· The calling process must contain the branch that started the transaction.

· The access mode of the caller must be the same as or more privileged than that of any branch of the specified transaction within this process. (See $START_TRANS and $START_BRANCH.)

· $START_BRANCH must have been performed for each authorized branch of the specified transaction.

$END_TRANS may fail for various reasons, including:

· The preconditions were not met.

· An abort event has occurred for the transaction.

Postconditions on successful completion of $END_TRANS are shown in Table 3–27. $END_TRANS will not complete successfully (that is, the event flag will not be set, the AST routine will not be called, and the I/O status block will not be filled in) until after each authorized and synchronized branch of the transaction has initiated a call to $END_BRANCH.

$END_TRANS will not complete successfully while the calling process is either:

· In an access mode that is more privileged than the DECdtm calls made by any resource manager participant in the transaction.

· At AST level (in any access mode).

For example, if Oracle Rdb is a participant in the transaction, $END_TRANS will not complete successfully while the calling process is in supervisor, executive, or kernel mode, or while the calling process is at AST level.

Successful completion of $END_TRANS is not indefinitely postponed by network failure.

Table 3–27 Postconditions When $END_TRANS Completes Successfully

	Postcondition
	Meaning

	The transaction is ended.
	· The TID of the transaction is invalid (calls to any DECdtm system services except $GETDTI and $SETDTI that pass that TID will fail, and calls to resource managers that pass that TID should fail).

· The transaction no longer has any application or RM participants on the local node.

· All communications about the transaction between the local DECdtm transaction manager and other DECdtm transaction managers are finished (including the final cleanup acknowledgments).

	The outcome of the transaction is commit.
	All the transaction operations by authorized branches that completed successfully before $END_TRANS was called will take effect. That is, the effects of these operations will be made permanent.

Operations by unauthorized branches will be aborted. (An unauthorized branch is one without a matching $ADD_BRANCH.)

	DECdtm quotas are returned.
	All quotas allocated for the transaction by calls on the local node to DECdtm services are now returned.

	The transaction is not the default transaction of the calling process.
	If the transaction was the default transaction of the calling process, then it is so no longer.

Postconditions on completion with the SS$_ABORT error are shown in Table 3–28. $END_TRANS does not complete with the SS$_ABORT error until all branches on the local node have been removed from the transaction. Thus it does not complete with this error until after each authorized and synchronized branch on the local node has initiated a call to either $END_BRANCH or $ABORT_TRANS.

Note that the completion of $END_TRANS with the SS$_ABORT error is not indefinitely postponed by network failure.

Table 3–28 Postconditions When $END_TRANS Completes With the SS$_

ABORT Error

	Postcondition
	Meaning

	The transaction is ended.
	This means that, if DDTM$M_NOWAIT is clear:

· The TID of the transaction is invalid (calls to any DECdtm system services except $GETDTI and $SETDTI that pass that TID will fail, and calls to resource managers that pass that TID will fail).

· The transaction no longer has any application or RM participants on the local node.

· All communications about the transaction between the local DECdtm transaction manager and other DECdtm transaction managers are finished (including the final "cleanup" acknowledgments).

	The outcome of the transaction is abort.
	None of the operations of the transaction will ever take any effect.

The I/O status block contains one reason why the transaction was aborted. Note that if there are multiple reasons for the transaction aborting, the DECdtm transaction manager returns one of the reasons in the I/O status block. It may return different reasons to different branches in the transaction.

For example, if the transaction timeout expires and a communications link fails, then either the DDTM$_TIMEOUT or DDTM$_COMM_FAIL abort reason code may be returned.

	DECdtm quotas are returned.
	If DDTM$M_NOWAIT is clear all quotas allocated for the transaction by calls on the local node to DECdtm services are now returned.

	The transaction is not the default transaction of the calling process.
	If DDTM$M_NOWAIT is clear then, if the transaction was the default transaction of the calling process, then it is now no longer.

There is also a wait form of the service, $END_TRANSW.

Required Privileges

None

Required Quotas

ASTLM

Condition Values Returned

	SS$_NORMAL
	If returned in R0, the request was successfully queued. If returned in the I/O status block, the service completed successfully.

	SS$_SYNCH
	The service completed successfully and synchronously (returned only if the DDTM$M_SYNC flag is set).

	SS$_ABORT
	The transaction aborted (see the abort reason code returned in the I/O status block for one reason why the transaction aborted).

	SS$_ACCVIO
	An argument was not accessible to the caller.

	SS$_BADPARAM
	The options flags were invalid.

	SS$_CURTIDCHANGE
	The tid argument was omitted and a call to change the default transaction of the calling process was in progress.

	SS$_EXASTLM
	The process AST limit (ASTLM) was exceeded.

	SS$_ILLEFC
	The event flag number was invalid.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_NOCURTID
	An attempt was made to end the default transaction (the tid argument was omitted) but the calling process did not have a default transaction.

	SS$_NOSUCHTID
	The calling process did not contain any branches in the transaction.

	SS$_NOTORIGIN
	The calling process did not start the transaction.

	SS$_WRONGACMODE
	The access mode of the caller was less privileged than that of a branch of the transaction in this process.

	SS$_WRONGSTATE
	The calling process had already called either $ABORT_TRANS with a zero BID or $END_TRANS.

$END_TRANSW

Ends a transaction by attempting to commit it, and returns the outcome of the transaction.

$END_TRANSW always waits for the request to complete before returning to the caller. Apart from this, it is identical to $END_TRANS.

Do not call $END_TRANSW from asynchronous system trap (AST) level, or from an access mode that is more privileged than the DECdtm calls made by any resource manager participant in the transaction. If you do, the $END_TRANSW service will wait indefinitely.

Format

SYS$END_TRANSW [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid]]

C Prototype

int sys$end_transw (unsigned int efn, unsigned int flags, struct _iosb *iosb, ...);

$FORGET_RM

Deletes a resource manager instance (RMI) from the calling process.

Format

SYS$FORGET_RM [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,rm_id

C Prototype

int sys$forget_rm (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int rm_id);

Arguments

efn

	OpenVMS usage:
	ef_number

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Number of the event flag that is set when the service completes. If this argument is omitted, event flag 0 is set.

flags

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Flags specifying options for the service. The flags argument is a longword bit mask in which each bit corresponds to an option flag. The $DDTMDEF macro defines symbolic names for these option flags, and those currently defined are shown in Table 3–35. All undefined bits must be 0. If this argument is omitted, no flags are set.

Table 3–35 $FORGET_RM Option Flags

	Flag Name
	Description

	DDTM$M_SYNC
	Specifies successful synchronous completion by returning SS$_SYNCH. When SS$_SYNCH is returned, the AST routine is not called, the event flag is not set, and the I/O status block is not filled in.

iosb

	OpenVMS usage:
	io_status_block

	type:
	quadword (unsigned)

	access:
	write only

	mechanism:
	by reference

The I/O status block in which the completion status of the service is returned as a condition value. See the Returns section for the condition values returned.

The following diagram shows the structure of the I/O status block.

[image: image6.png]15

Reserver! by Cornpacy Condition Value,

Reserved by Cormpary

astadr

	OpenVMS usage:
	ast_procedure

	type:
	procedure entry mask

	access:
	call without stack unwinding

	mechanism:
	by reference

The AST routine executed when the service completes, if SS$_NORMAL is returned in R0. The astadr argument is the address of the entry mask of this routine. The routine is executed in the same access mode as that of the caller of the $FORGET_RM service.

astprm

	OpenVMS usage:
	user_arg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The AST parameter that is passed to the AST routine specified by the astadr argument.

rm_id

	OpenVMS usage:
	identifier

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The identifier of the RMI to be deleted from the calling process.

Description

The $FORGET_RM system service:

· Deletes the specified resource manager instance (RMI) from the calling process.

· Tries to abort all transactions that have not already committed and that have RM participants associated with that RMI.

· Removes all RM participants associated with the RMI from their transactions.

· Implicitly acknowledges all unacknowledged event reports delivered to that RMI or to its RM participants. The reply given in the implicit acknowledgment depends on the type of the event as follows:

Table 3–31 $FORGET_RM’s Implicit Acknowledgments

	Type of Event
	Reply

	Abort
	SS$_NORMAL

	Commit
	SS$_REMEMBER

	Prepare
	SS$_VETO (with the DDTM$_SEG_FAIL reason code)

	One-phase commit
	SS$_VETO

	Default transaction started
	SS$_NORMAL

	Nondefault transaction started
	SS$_NORMAL

Preconditions for the successful completion of $FORGET_RM are:

· The calling process must contain the specified RMI.

· The access mode of the caller must be the same as or more privileged than that of the specified RMI.

Postconditions on successful completion of $FORGET_RM are shown in Table 3–34.

Table 3–34 Postconditions When $FORGET_RM Completes Successfully

	Postcondition
	Meaning

	The specified RMI is deleted from the calling process.
	· Its identifier is invalid (any subsequent calls to $JOIN_RM or $FORGET_RM that pass its identifier will fail).

· The DECdtm transaction manager will deliver no more event reports to that RMI.

	There are no RM participants associated with the RMI.
	Removes all RM participants associated with the specified RMI from their transactions. Thus the DECdtm transaction manager will deliver no more event reports to those RM participants.

For an RM participant that had an unacknowledged event report, the postconditions are the same as those of the appropriate implicit acknowledgment (see Table 3–31) except that the RM participant is always removed from the transaction.

	There are no unacknowledged event reports delivered to the RMI or its RM participants.
	All unacknowledged event reports are implicitly acknowledged by this call to $FORGET_RM ((see Table 3–31). Thus a subsequent call to $ACK_EVENT that acknowledges one of these event reports will fail.

	Quotas are returned.
	Returns the following quotas:

· The BYTLM quota consumed by the call to $DECLARE_RM that created the RMI.

· The ASTLM quotas consumed by all calls to $JOIN_RM or $ACK_EVENT that added RM participants associated with the RMI.

Note that when a process terminates (normally or abnormally), a $FORGET_RM is automatically performed for each RMI in that process. And when an image terminates (normally or abnormally), a $FORGET_RM is automatically performed for each user mode RMI in that process.

There is also a wait form of the service, $FORGET_RMW.

Required Privileges

None.

Required Quotas

None.

Condition Values Returned

	OpenVMS usage:
	cond_value

	type:
	longword (unsigned)

	access:
	write only

	mechanism:
	by value

The status is returned in R0 as a longword condition value. Possible condition values are shown in the following table.

	Value
	Description

	SS$_NORMAL
	If returned in R0, the request was successfully queued. If returned in the I/O status block, the service completed successfully.

	SS$_SYNCH
	The service completed successfully and synchronously (returned only if the DDTM$M_SYNC flag is set).

	SS$_ACCVIO
	An argument was not accessible to the caller.

	SS$_BADPARAM
	An option flag was invalid.

	SS$_EXASTLM
	The process AST limit (ASTLM) was exceeded.

	SS$_ILLEFC
	The event flag number was invalid.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_WRONGACMODE
	The access mode of the caller was less privileged than that of the RMI.

	SS$_NOSUCHRM
	The calling process did not contain the specified RMI.

$FORGET_RMW

Deletes a resource manager instance (RMI) from the calling process.

$FORGET_RMW always waits for the request to complete before returning to the caller. Apart from this, it is identical to $FORGET_RM.

Format

SYS$FORGET_RMW [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,rm_id

C Prototype

int sys$forget_rmw (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int rm_id);

$GET_DEFAULT_TRANS

Returns the default transaction of the calling process.

Format

SYS$GET_DEFAULT_TRANS tid

C Prototype

int sys$get_default_trans (unsigned int tid [4]);

Arguments

tid

	OpenVMS usage:
	trans_id

	type:
	octaword (unsigned)

	access:
	write only

	mechanism:
	by reference

Address of an octaword in which the identifier (TID) of the default transaction of the calling process is returned.

Description

Preconditions for the successful completion of $GET_DEFAULT_TRANS include:

· The calling process must have a default transaction.

$GET_DEFAULT_TRANS may fail for various reasons, including:

· These preconditions were not met.

· The default transaction was being changed at the time of the call.

Postconditions on successful completion of $GET_DEFAULT_TRANS are shown in Table 3–38.

Table 3–38 Postconditions When $GET_DEFAULT_TRANS Completes

Successfully

	Postcondition
	Meaning

	The identifier of the default transaction of the calling process is returned.
	The identifier (TID) of the default transaction of the calling process is returned in the tid argument.

Required Privileges

None.

Required Quotas

None.

Condition Values Returned

	SS$_NORMAL
	The request was successful.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_NOCURTID
	The calling process did not have a default transaction.

	SS$_WRONGSTATE
	The default transaction was being changed at the time of the call.

$GETDTI

Returns information about the state of transactions.

Format

SYS$GETDTI [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,[log_id] ,[contxt] ,search ,
 itmlst

C Prototype

int sys$getdti (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int log_id [4], unsigned int *contxt, void *search,
 void *itmlst);

Arguments

efn

	OpenVMS usage:
	ef_number

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Number of the event flag that is set when the service completes. If this argument is omitted, event flag 0 is set.

flags

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Flags specifying options for the service. The flags argument is a longword bit mask in which each bit corresponds to an option flag. The $DDTMDEF macro defines symbolic names for these option flags, and those currently defined are shown in Table 3–39. All undefined bits must be 0. If this argument is omitted, no flags are set.

Table 3–39 $GETDTI Option Flags

	Flag Name
	Description

	DDTM$M_FULL_STATE
	Indicates that the $GETDTI call is not to complete until the ABORTED or COMMITTED state can be returned. Thus if another node or coordinating resource manager must be contacted and it is currently unreachable this service does not return until the node can be contacted.

	DDTM$M_SYNC
	Specifies successful synchronous completion by returning SS$_SYNCH. When SS$_SYNCH is returned, the AST routine is not called, the event flag is not set, and the I/O status block is not filled in.

iosb

	OpenVMS usage:
	io_status_block

	type:
	quadword (unsigned)

	access:
	write only

	mechanism:
	by reference

The I/O status block in which the completion status of the service is returned as a condition value. See the Returns section for the condition values returned.

The following diagram shows the structure of the I/O status block.

[image: image7.png]15

Reserver! by Cornpacy Condition Value,

Reserved by Cormpary

astadr

	OpenVMS usage:
	ast_procedure

	type:
	procedure entry mask

	access:
	call without stack unwinding

	mechanism:
	by reference

The AST routine executed when the service completes, if SS$_NORMAL is returned in R0. The astadr argument is the address of the entry mask of this routine. The routine is executed in the same access mode as that of the caller of the $GETDTI service.

astprm

	OpenVMS usage:
	user_arg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The AST parameter passed to the AST routine specified by the astadr argument.

log_id

	OpenVMS usage:
	uid

	type:
	octaword (unsigned)

	access:
	read only

	mechanism:
	by reference

The log id of the transaction manager that is coordinating the transaction, returned as the log_id argument on a $DECLARE_RM operation. The log_id argument verifies that the recovery log returning transaction information is the same one used to record transaction state information.

If you do not specify the same log id used by the transaction manager to write transaction information then $GETDTI will return an error.

If the log_id argument is specified as a zero UID then $GETDTI will use the current active log for this node. If the specified transaction cannot be found in this log then the returned state will be aborted. The log identifier can only be specified as zero when the DTI$_SEARCH_AS_NODE item is absent or results in a search that specifies the local node. Note that the log_id argument cannot be specified as a zero address.

contxt

	OpenVMS usage:
	contxt

	type:
	longword (unsigned)

	access:
	modify

	mechanism:
	by reference

The address of a longword used to maintain a context between sequential calls to $GETDTI. A call to $GETDTI will start a new search if the context value is zero or continue the existing search if the context is valid.

The search context is valid only after a successful call to $GETDTI and is invalidated by a subsequent call to $GETDTI.

The context is also used as input to $SETDTI after a successful call to $GETDTI. Calls to $SETDTI do not modify or invalidate the context.

search

	OpenVMS usage:
	item_list_3

	type:
	descriptor list

	access:
	read only

	mechanism:
	by reference

Item list specifying how the search for transaction information is to be bounded.

The search argument is the address of a list of item descriptors, each of which describes a search item. The list of item descriptors is terminated by a longword of 0. Each item descriptor in the search item list acts as an input argument to $GETDTI and as such is only required to be read only.

The following shows the format of a single item descriptor.

[image: image8.png]15

tem codle

Buffer length

Buffer acidress.

Retum length acklress

The following table describes the search item descriptor fields:

	Field
	Description

	buffer length
	A word containing a user-supplied integer specifying the length (in bytes) of a buffer from which $GETDTI is to read the information. The length of the buffer needed depends on the item code field of the search item descriptor. If the value of buffer length is too small, $GETDTI will return an error status.

	item code
	A word containing a user-supplied symbolic code specifying the search item that $GETDTI is to use. The $DTIDEF macro defines these codes. Each item code is described in the Search Item Codes section below.

	buffer address
	A longword containing the user-supplied address of the buffer from which $GETDTI reads the search information.

	return length address
	This longword is not used in the search item list, as all search items are read-only.

itmlst
	OpenVMS usage:
	item_list_3

	type:
	descriptor list

	access:
	read only

	mechanism:
	by reference

Item list specifying the transaction information that $GETDTI is to return. The itmlst argument is the address of a list of item descriptors, containing a single entry which describes an item of information. The list of item descriptors is terminated by a longword of 0. The following diagram depicts the format of a single item descriptor. The item descriptor in the item list acts as an output argument to $GETDTI and as such is required to be writeable in caller’s mode.

The following shows the format of a single item descriptor.

[image: image9.png]15

tem codle

Buffer length

Buffer acidress.

Retum length acklress

The following table describes the itmlst item descriptor fields:
	Field
	Description

	buffer length
	A word containing a user-supplied integer specifying the length (in bytes) of the buffer where $GETDTI is to write the information. The length of the buffer needed depends on the item code field of the search item descriptor. If the value of buffer length is too small, $GETDTI truncates the data and returns the condition code value SS$_BUFFEROVF.

	item code
	A word containing a user-supplied symbolic code specifying the search item that $GETDTI is to use. The $DTIDEF macro defines these codes. Each item code is described in the Itmlst Item Codes section below.

	buffer address
	A longword containing the user-supplied address of the buffer where $GETDTI is to write the information.

	return length address
	A longword containing the user-supplied address of a word where $GETDTI writes return length information.

Search Item Codes

DTI$_SEARCH_AS_NODE

When you specify DTI$_SEARCH_AS_NODE, $GETDTI limits the get request to the specified node name. This can be used during cluster failover recovery processing to allow another node in the cluster to act on behalf of the failed node. The DTI$_SEARCH_AS_NODE item descriptor should point to an ASCII string containing a valid node name string.

DTI$_SEARCH_CURRENT_TID

When you specify DTI$_SEARCH_CURRENT_TID, $GETDTI limits the get request to returning the default process transaction identifier. DTI$_SEARCH_CURRENT_TID uses the DTI$_TRANSACTION_INFORMATION item in the itmlst argument to write this information. Only the DTI$T_TID field in the DTI_TRANSACTION_INFORMATION item is written; all other fields are unpredictable.

DTI$_SEARCH_RESOLVED_STATE

When you specify DTI$_SEARCH_RESOLVED_STATE, the buffer address points to a transaction record that describes the search conditions for this $GETDTI call. The following fields are used from this transaction record and must be specified before $GETDTI can proceed. The $DTIDEF macro defines these fields.

	Item
	Description

	DTI$B_PART_NAME_LEN
	A byte containing the length of the following participant name field DTI$T_PART_NAME.

	DTI$T_PART_NAME
	A character field containing DTI$B_PART_NAME_LEN characters that specifies a resource manager name. When the resource manager name string is supplied, a wildcard search can be specified. The left-most characters supplied in this string will be matched against all resource managers with the same leftmost characters. If the string entered has a length of 0, all resource managers will be selected.

	DTI$T_PART_LOG_ID
	Reserved by Compaq.

	DTI$T_TID
	A 16-byte field containing the transaction identifier.

DTI$_SEARCH_RESOLVED_STATE uses the DTI$_TRANSACTION_INFORMATION item in the itmlst argument to write this information.

	Item
	Description

	DTI$B_STATE
	A byte containing the state of the transaction identified by DTI$T_TID. Table 3–40 shows the possible values returned in the state field.

	DTI$B_PART_NAME_LEN
	A byte containing the length of the following participant name field DTI$T_PART_NAME.

	DTI$T_PART_NAME
	A character field containing DTI$B_PART_NAME_LEN characters that specifies a resource manager instance.

	DTI$T_PART_LOG_ID
	Reserved by Compaq.

	DTI$T_TID
	A 16-byte field containing the transaction identifier.

Table 3–40 $GETDTI Transaction States

	DTI$K_STARTING
	The transaction is in the starting state.

	DTI$K_ACTIVE
	The transaction is in the active state.

	DTI$K_ONE_P_COMMITTING
	The transaction is committing to phase one.

	DTI$K_PREPARING
	The transaction is in the preparing state.

	DTI$K_PREPARED
	The transaction has prepared.

	DTI$K_COMMITTING
	The transaction is in the commtting state.

	DTI$K_COMMITTED 1
	The transaction has committed.

	DTI$K_ONE_P_COMMITTED
	The transaction has committed to phase one.

	DTI$K_ABORTING
	The transaction is in the aborting state.

	DTI$K_ABORTED 1
	The transaction has been aborted or forgotten. Note that if the transaction was aborted before the call to $GETDTI then the alternate status SS$_NOSUCHTID is returned; if the transaction was aborted during the call to $GETDTI then the DTI$K_ABORTED state is returned in the transaction record.

	1 The DTI$K_COMMITTED and DTI$K_ABORTED transaction states are the only values that can be returned when the DDTM$M_FULL_STATE flag is specified.

Itmlst Item Codes

DTI$_TRANSACTION_INFORMATION

When you specify DTI$_TRANSACTION_INFORMATION, $GETDTI returns the following fields dependent on the search criteria established by the search argument. Each record may be composed of some of the following items:

	Item
	Description

	DTI$B_STATE
	A byte containing the state of the transaction identified by DTI$T_TID. Table 3–40 shows the possible values returned in the state field.

	DTI$B_PART_NAME_LEN
	A byte containing the length of the following participant name field DTI$T_PART_NAME.

	DTI$T_PART_NAME
	A character field containing DTI$B_PART_NAME_LEN characters that specifies a resource manager name.

	DTI$T_PART_LOG_ID
	Reserved by Compaq.

	DTI$T_TID
	A 16-byte field containing the transaction identifier.

The DTI$_TRANSACTION_INFORMATION item buffer size should be at least equal to the symbolic value DTI$S_TRANSACTION_INFORMATION defined by $DTIDEF.

Description

During recovery from a failure, a resource manager calls $GETDTI to request the state of certain transactions with which it had been involved. As part of the recovery, the resource manager identifies any unresolved transactions, so that they can be processed to completion.

The $GETDTI service returns the resolved state of in-doubt transactions to recovering resource managers. The DDTM$M_FULL_STATE flag instructs $GETDTI not to complete until either DTI$K_COMMITTED or DTI$K_ABORTED can be returned (or an error status of SS$_NOSUCHTID). This may mean that the $GETDTI call may have to wait for other DECdtm nodes or a coordinating CRM to become available. This is the recommended method of obtaining an in-doubt transaction outcome for recovering resource managers.

Alternatively, $GETDTI can be used to return the current known state of transactions. Intermediate states may be returned. In particular, DTI$K_PREPARED indicates that a DECdtm node is unavailable and DTI$K_PREPARING indicates that a coordinating CRM is unavailable.

If $GETDTI is called during normal system operation to resolve the state of transactions that have not failed, then the returned transaction state could be any of the states shown in Table 3–40.

A $GETDTI call may also be used in an OpenVMS Cluster environment to perform recovery on behalf of a resource manager on a failed node. To perform this action, the DTI$_SEARCH_AS_NODE search item descriptor is used to inform $GETDTI of the node for which recovery is being performed. This action is equivalent to performing the $GETDTI request on the failed node. The use of DTI$_SEARCH_AS_NODE will perform correctly when the target node is either available or unavailable. If the target node is available when the $GETDTI call is executed, the request is re-routed to the target node for execution.

To obtain information about transactions, $GETDTI must be given a set of search criteria. The criteria are specified as parameters and as part of a itemlist for the search argument using the DTI$_SEARCH_RESOLVED_STATE item descriptor. The transaction information required by $GETDTI to resolve a transaction includes:

· Transaction Identifier (TID).

· Resource Manager name.

· Transaction Manager log identifier.

· Resource Manager log identifier.

· Optionally, a remote node name.

If you specify a TID as 0, $GETDTI assumes a wildcard operation and returns the requested information for each TID in the log that it has privilege to access, one TID per call. To perform a wildcard operation, you must call $GETDTI in a loop, testing for the condition value SS$_NOSUCHTID after each call and exiting the loop when SS$_NOSUCHTID is returned.

A resource manager is identified by its name in DTI$T_PART_NAME. A wildcard search can be specified for the resource manager with this item. The leftmost characters supplied in this string are matched against all resource managers with the same leftmost characters in their names.

If a resource manager name entered as the item has a length of 0, all resource managers are selected.

Transaction managers and resource managers maintain log files to keep a record of transactions and their related states. During recovery, it is important that the transaction manager and resource manager use matching log files. The transaction manger log identifier is returned by the $DECLARE_RM service call. It should be recorded in the resource manager’s log records and supplied to $GETDTI as the value of the log-id argument. If the wrong resource manager log, or the wrong transaction manager log, is used, the discrepancy will result in an error from $GETDTI or $SETDTI.

The contxt argument is used by $GETDTI to establish a search context when it is returning the resolved state of a transaction. The search context indicates the node and transaction manager log identifier for use in a subsequent $SETDTI operation to delete the resource manager from the transaction. The search context is created when the contxt argument is invalid, or re-used if the contxt argument is valid. The search context is deleted when a call is made to $GETDTI that returns SS$_NOSUCHTID. The search context is maintained exclusively by $GETDTI and $SETDTI and should not be modified by the caller, with an exception of initially zeroing the context.

SYSPRV privilege is required to retrieve or modify information about transactions with which the process is not currently associated.

Condition Values Returned

	SS$_NORMAL
	If returned in R0, the request was successfully queued. If returned in the I/O status block, the service completed successfully.

	SS$_SYNCH
	The service completed successfully and synchronously (returned only if the DDTM$M_SYNC flag is set).

	SS$_ACCVIO
	An argument was not accessible to the caller.

	SS$_BADLOGVER
	There is an invalid or unsupported log version.

	SS$_BADPARAM
	The option flags, SEARCH or ITMLST are invalid.

	SS$_BUGCHECK
	A failure has occurred during the processing of the request.

	SS$_EXASTLM
	The process AST limit (ASTLM) was exceeded.

	SS$_ILLEFC
	The event flag number was invalid.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_INVLOG
	The log format is invalid.

	SS$_NOSUCHFILE
	The transaction manager log cannot be found.

	SS$_NOSUCHNODE
	The subordinate DECnet node is unknown.

	SS$_NOSUCHPART
	The participant is not part of the transaction.

	SS$_NOSUCHTID
	The designated TID is unknown.

	SS$_NOSYSPRV
	The caller is not authorized to examine the specified transaction.

	SS$_PROTOCOL
	There is a message protocol error.

	SS$_REMOTE_PROC
	There was an attempt to use a node when it is not part of the VMScluster.

	SS$_REMRSRC
	There are insufficient resources at the remote node.

	SS$_UNREACHABLE
	A superior node is unreachable.

$GETDTIW

Returns information about the resolved state of transactions and the process default transaction identifier.

$GETDTIW always waits for the request to complete before returning to the caller. Apart from this, it is identical to $GETDTI.

Format

SYS$GETDTIW [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,[contxt] ,[log_id] ,search ,
 itmlst

C Prototype

int sys$getdtiw (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int log_id [4], unsigned int *contxt, void *search,
 void *itmlst);

$JOIN_RM

Adds a new RM participant to a transaction.

Format

SYS$JOIN_RM [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,rm_id [,[tid] ,[part_name] ,
 [rm_context] ,[timout] ,[bid]]

C Prototype

int sys$join_rm (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int rm_id, …);

Arguments

efn

	OpenVMS usage:
	ef_number

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Number of the event flag that is set when the service completes. If this argument is omitted, event flag 0 is set.

flags

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Flags specifying options for the service. The flags argument is a longword bit mask in which each bit corresponds to an option flag. The $DDTMDEF macro defines symbolic names for these option flags, and those currently defined are shown in Table 3–44. All undefined bits must be 0. If this argument is omitted, no flags are set.

Table 3–44 $JOIN_RM Option Flags

	Flag Name
	Description

	DDTM$M_COORDINATOR
	Set this flag to specify that the new RM participant is to be a coordinator of the transaction on this node.

	DDTM$M_SYNC
	Specifies successful synchronous completion by returning SS$_SYNCH. When SS$_SYNCH is returned, the AST routine is not called, the event flag is not set, and the I/O status block is not filled in.

iosb

	OpenVMS usage:
	io_status_block

	type:
	quadword (unsigned)

	access:
	write only

	mechanism:
	by reference

The I/O status block in which the completion status of the service is returned as a condition value. See the Returns section for the condition values returned.

The following diagram shows the structure of the I/O status block.

[image: image10.png]15

Reserver! by Cornpacy Condition Value,

Reserved by Cormpary

astadr

	OpenVMS usage:
	ast_procedure

	type:
	procedure entry mask

	access:
	call without stack unwinding

	mechanism:
	by reference

The AST routine that is executed when the service completes, if SS$_NORMAL is returned in R0. The astadr argument is the address of the entry mask of this routine. The routine is executed in the same access mode as that of the caller of the $JOIN_RM service.

astprm

	OpenVMS usage:
	user_arg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The AST parameter that is passed to the AST routine specified by the astadr argument.

rm_id

	OpenVMS usage:
	identifier

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The identifier of the RMI with which the new RM participant is associated.

This identifies:

· Types of event that are to be reported to the new RM participant.

· Event handler to which these event reports are to be delivered, and the access mode in which its ASTs are to be fired.

· Minimum access mode that the new RM participant must be in to acknowledge one of these event reports by calling $ACK_EVENT.

· Whether or not the DECdtm transaction manager may log information about the new RM participant.

tid

	OpenVMS usage:
	trans_id

	type:
	octaword (unsigned)

	access:
	read only

	mechanism:
	by reference

The identifier (TID) of the transaction to which the new RM participant is to be added.

If this argument is omitted (the default) or its value is zero, $JOIN_RM adds an RM participant to the default transaction of the calling process.

part_name

	OpenVMS usage:
	char_string

	type:
	character-coded_text_string

	access:
	read only

	mechanism:
	by descriptor—fixed-length string descriptor

The name of the new RM participant.

Used by recoverable resource managers to specify the RM participant that would be used in a subsequent call to $GETDTI or $SETDTI during recovery.

This argument has no effect if the RMI is volatile.

If this argument is omitted (the default) or its value is zero, the name of the new RM participant is the same of that of the RMI with which it is associated.

The string passed in this argument can be no longer than 32 characters.

rm_context

	OpenVMS usage:
	userarg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The context associated with the new RM participant. This is passed in the event reports subsequently delivered to the new RM participant.

If this argument is omitted (the default) or is zero, the context associated with the new RM participant is the same of that of the RMI with which it is associated.

timout

	OpenVMS usage:
	date_time

	type:
	quadword (unsigned)

	access:
	read only

	mechanism:
	by reference

Reserved to Compaq.

bid

	OpenVMS usage:
	branch_id

	type:
	octaword (unsigned)

	access:
	write only

	mechanism:
	by reference

The identifier of an authorized branch (BID) that may be added to the transaction by a subsequent call to $START_BRANCH on the same node as that of the RMI. This argument is ignored if the DDTM$M_COORDINATOR flag is clear in the flags argument. The call to $START_BRANCH should specify the node of the RMI for the tm_name argument.

Description

The $JOIN_RM system service:

· Adds a new RM participant to the specified transaction. The new RM participant is associated with the RMI whose identifier is passed in the rm_id argument.

· Introduces a new transaction to DECdtm if the new RM participant is a coordinator and the specified transaction is unknown to DECdtm.

· Authorizes a new branch of the transaction if the new RM participant is a coordinator.

Preconditions for the successful completion of $JOIN_RM are:

· Unless the DDTM$M_COORDINATOR flag is set, the calling process must contain at least one branch of the specified transaction.

· The calling process must contain the specified RMI.

· The caller must not be in a less privileged mode than the access mode of the specified RMI.

· If the DDTM$M_COORDINATOR flag is set, either the calling process must have the SYSPRV privilege, or the caller must be in executive or kernel mode.

· If the DDTM$M_COORDINATOR flag is set, the specified RMI must not be volatile. That is, the DDTM$M_VOLATILE flag must not have been set on the call to the $DECLARE_RM that created it.

· The access mode of the specified RMI must not be less privileged than that of the specified transaction in this process.

$JOIN_RM can fail for various reasons, including:

· Preconditions were not met.

· The DDTM$M_COORDINATOR flag was set but no bid argument was supplied.

When $JOIN_RM completes successfully, a new RM participant running in the calling process is added to the transaction. This RM participant is associated with the specified RMI.

The DECdtm transaction manager will report to the new RM participant the types of event specified in the call to $DECLARE_RM that created the RMI with which it is associated. Note however that events of type prepare, one-phase commit, and commit are never reported to RM participants that set the DDTM$M_COORDINATOR flag on the call to $JOIN_RM.

If the call to $DECLARE_RM requested prepare and one-phase commit events, and the $JOIN_RM call does not set the DDTM$M_COORDINATOR flag, the new RM participant is entitled to a vote on the outcome of the transaction.

If the $JOIN_RM call sets the DDTM$M_COORDINATOR flag, then the new RM participant is expected to initiate commit or abort processing by a call to $TRANS_EVENT. No events of type prepare, one-phase commit, or commit are delivered to the RM participant. Events of type abort are reported to the RM participant.

The new RM participant is removed from the transaction when the first of the following conditions is met:

· On successful completion of a call to $ACK_EVENT that acknowledges an event report delivered to that RM participant, if the event and its acknowledgment were one of those shown in the following table:

	Event
	Acknowledgment (report_reply)

	Abort
	SS$_FORGET

	Commit
	SS$_FORGET or SS$_REMEMBER

	Prepare
	SS$_FORGET

	One-phase commit
	SS$_NORMAL or SS$_VETO

· On completion of a successful call to $TRANS_EVENT that specifies a commit or abort event, if the DDTM$M_COORDINATOR flag is set.

· When a commit or abort event occurs, and no associated event report is delivered to the RM participant.

· On successful completion of a call to $FORGET_RM that deletes the RMI with which it is associated.

· When the current process terminates (normally or abnormally).

· When the current image terminates (normally or abnormally).

If the DDTM$M_COORDINATOR flag is set:

· A new branch is authorized for the transaction and its identifier is returned in the octaword that the bid argument points to. $JOIN_RM uses the $CREATE_UID system service to generate the BID. No other call to $ADD_BRANCH, $JOIN_RM, or $CREATE_UID on any other node ever returns the same BID value.

· The transaction cannot commit until the new branch has been started by a matching call to $START_BRANCH. (See the description of $START_BRANCH for the definition of a matching call to $START_BRANCH.)

· If the transaction is not already known to this process, then the transaction is introduced to this process with an access mode equal to the access mode of the caller. (See the description of $START_TRANS for a definition of the access mode of a transaction.)

There is also a wait form of the service, $JOIN_RMW.

Required Privileges

If the DDTM$M_COORDINATOR flag is set, then either the calling process must have the SYSPRV privilege or the caller must be in executive or kernel mode.

Required Quotas

BYTLM, ASTLM

Condition Values Returned

	SS$_NORMAL
	If returned in R0, the request was successfully queued. If returned in the I/O status block, the service completed successfully.

	SS$_SYNCH
	The service completed successfully and synchronously (returned only if the DDTM$M_SYNC flag is set).

	SS$_ACCVIO
	An argument was not accessible to the caller.

	SS$_BADPARAM
	The options flags were invalid, the specified tid was invalid, or DDTM$M_COORDINATOR set but no bid supplied.

	SS$_EXASTLM
	The process AST limit (ASTLM) was exceeded.

	SS$_EXQUOTA
	The job buffered I/O byte limit quota (BYTLM) was exceeded.

	SS$_ILLEFC
	The event flag number was invalid.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_INVBUFLEN
	The string passed in the part_name argument was too long.

	SS$_NOSYSPRIV
	The DDTM$M_COORDINATOR flag was set and the caller was in user or supervisor mode but the calling process did not have the SYSPRV privilege.

	SS$_NOCURTID
	An attempt was made to add a new participant to the default transaction (the tid argument was zero or omitted) but the calling process did not have a default transaction.

	SS$_NOSUCHTID
	The DDTM$M_COORDINATOR flag was clear and the calling process did not contain any branches in the transaction.

	SS$_NOSUCHRM
	The calling process did not contain the specified RMI.

	SS$_WRONGACMODE
	The caller was in a less privileged access mode than that of the RMI.

	SS$_WRONGSTATE
	The transaction was in the wrong state for the attempted operation because either:

· An abort event had occurred for the transaction.

· A call to $END_TRANS to end the transaction was in progress and it is too late to add a new RM participant to the transaction.

$JOIN_RMW

Adds a new RM participant to a transaction.

$JOIN_RMW always waits for the request to complete before returning to the caller. Apart from this, it is identical to $JOIN_RM.

Format

SYS$JOIN_RMW [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,rm_id [,[tid] ,[part_name] ,
 [rm_context] ,[timout] ,[bid]]

C Prototype

int sys$join_rmw (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int rm_id, …);

$SET_DEFAULT_TRANS

Sets or clears the default transaction of the calling process.

Format

SYS$SET_DEFAULT_TRANS [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[new_tid] ,
 [old_tid]]

C Prototype

int sys$set_default_trans (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 …);

Arguments

efn

	OpenVMS usage:
	ef_number

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Number of the event flag that is set when the service completes. If this argument is omitted, event flag 0 is set.

flags

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Flags specifying options for the service. The flags argument is a longword bit mask in which each bit corresponds to an option flag. The $DDTMDEF macro defines symbolic names for these option flags, and those currently defined are shown in Table 3–48. All undefined bits must be 0. If this argument is omitted, no flags are set.

Table 3–48 $SET_DEFAULT_TRANS Option Flags

	Flag Name
	Description

	DDTM$M_SYNC
	Specifies successful synchronous completion by returning SS$_SYNCH. When SS$_SYNCH is returned, the AST routine is not called, the event flag is not set, and the I/O status block is not filled in.

iosb

	OpenVMS usage:
	io_status_block

	type:
	quadword (unsigned)

	access:
	write only

	mechanism:
	by reference

The I/O status block in which the completion status of the service is returned as a condition value. See the Returns section for the condition values returned.

The following diagram shows the structure of the I/O status block.

[image: image11.png]15

Reserver! by Cornpacy Condition Value,

Reserved by Cormpary

astadr

	OpenVMS usage:
	ast_procedure

	type:
	procedure entry mask

	access:
	call without stack unwinding

	mechanism:
	by reference

The AST routine executed when the service completes, if SS$_NORMAL is returned in R0. The astadr argument is the address of the entry mask of this routine. The routine is executed in the same access mode as that of the caller of the $SET_DEFAULT_TRANS service.

astprm

	OpenVMS usage:
	user_arg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The AST parameter passed to the AST routine specified by the astadr argument.

new_tid

	OpenVMS usage:
	trans_id

	type:
	octaword (unsigned)

	access:
	read only

	mechanism:
	by reference

The identifier (TID) of the new default transaction for the calling process.

If this argument is zero (the default) or if it specifies a zero TID (an octaword of zeros), the service clears the default transaction of the calling process.

old_tid

	OpenVMS usage:
	trans_id

	type:
	octaword (unsigned)

	access:
	write only

	mechanism:
	by reference

An octaword in which the service returns the identifier (TID) of the calling process’ previous transaction (the one that was set or cleared by this call to $SET_DEFAULT_TRANS).

A zero TID is returned if the calling process did not have a default transaction prior to the call.

Description

The $SET_DEFAULT_TRANS system service:

· Sets or clears the default transaction of the calling process.

If either the new_tid argument passes the null value or the new_tid argument is omitted or zero, then the default transaction of the calling process is cleared. Otherwise the default transaction of the calling process is set to the value passed in the new_tid argument.

· Returns the identifier (TID) of the previous default transaction of the calling process (the one that was set or cleared by this call to $SET_DEFAULT_TRANS), if the old_tid argument is not zero.

$SET_DEFAULT_TRANS may fail for various reasons, including:

· A call to $START_TRANS or $START_BRANCH that changes the default transaction of the calling process is in progress.

Following a successful completion of $SET_DEFAULT_TRANS:

· The calling process does not have a default transaction, if either the new_tid argument passed the null value or the new_tid argument was omitted or zero.

· The default transaction of the calling process is that passed in the new_tid argument, if that argument was specified and its value was not zero.

· The identifier (TID) of the previous default transaction of the calling process is returned in the old_tid argument, if that argument was not omitted.

A null value is returned if the calling process did not previously have a default transaction.

There is also a wait form of the service, $SET_DEFAULT_TRANSW.

Required Privileges

None.

Required Quotas

ASTLM

Condition Values Returned

	SS$_NORMAL
	If returned in R0, the request was successfully queued. If returned in the I/O status block, the service completed successfully.

	SS$_SYNCH
	The service completed successfully and synchronously (returned only if the DDTM$M_SYNC flag is set).

	SS$_ACCVIO
	An argument was not accessible to the caller.

	SS$_BADPARAM
	The options flags were invalid.

	SS$_EXASTLM
	The process AST limit (ASTLM) was exceeded.

	SS$_ILLEFC
	The event flag number was invalid.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_WRONGSTATE
	The default transaction was being changed at the time of the call.

$SET_DEFAULT_TRANSW

Sets or clears the default transaction of the calling process.

$SET_DEFAULT_TRANSW always waits for the request to complete before returning to the caller. Apart from this, it is identical to $SET_DEFAULT_TRANS.

Format

SYS$SET_DEFAULT_TRANSW [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[new_tid] ,
 [old_tid]]

C Prototype

int sys$set_default_transw (unsigned int efn, unsigned int flags,
 struct _iosb *iosb, …);

$SETDTI

The Set Distributed Transaction Information service removes resource managers from transactions. It can also be used to modify transaction states.

Format

SYS$SETDTI [efn], [flags], iosb, [astadr], [astprm], [contxt], func, itmlst

C Prototype

int sys$setdti (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int *contxt, unsigned short int *func, void *itmlst);

Arguments

efn

	OpenVMS usage:
	ef_number

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Number of the event flag that is set when the service completes. If this argument is omitted, event flag 0 is set.

flags

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Flags specifying options for the service. The flags argument is a longword bit mask in which each bit corresponds to an option flag. The $DDTMDEF macro defines symbolic names for these option flags, and those currently defined are shown in Table 3–49. All undefined bits must be 0. If this argument is omitted, no flags are set.

Table 3–49 $SETDTI Operation Flag

	Flag Name
	Description

	DDTM$M_SYNC
	Specifies successful synchronous completion by returning SS$_SYNCH. When SS$_SYNCH is returned, the AST routine is not called, the event flag is not set, and the I/O status block is not filled in.

iosb

	OpenVMS usage:
	io_status_block

	type:
	quadword (unsigned)

	access:
	write only

	mechanism:
	by reference

The I/O status block in which the completion status of the service is returned as a condition value. See the Returns section for the condition values returned.

The following diagram shows the structure of the I/O status block.

[image: image12.png]15

Reserver! by Cornpacy Condition Value,

Reserved by Cormpary

astadr

	OpenVMS usage:
	ast_procedure

	type:
	procedure entry mask

	access:
	call without stack unwinding

	mechanism:
	by reference

The AST routine executed when the service completes, if SS$_NORMAL is returned in R0. The astadr argument is the address of the entry mask of this routine. The routine is executed in the same access mode as that of the caller of the $SETDTI service.

astprm

	OpenVMS usage:
	user_arg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The AST parameter passed to the AST routine specified by the astadr argument.

contxt

	OpenVMS usage:
	contxt

	type:
	longword (unsigned)

	access:
	modify

	mechanism:
	by reference

Context value obtained from a call to $GETDTI. It implicitly specifies a node and transaction manager log identifier.

func

	OpenVMS usage:
	function_code

	type:
	word (unsigned)

	access:
	read only

	mechanism:
	by value

Function modifier that specifies the set operation to be performed. The func is a longword value containing the function code.

The Table 3–50 shows the available function codes.

Table 3–50 $SETDTI Function Codes

	Function
	Description

	DTI$K_DELETE_RM_NAME
	Deletes the resource manager specified in itmlst item DTI$_TRANSACTION_INFORMATION, DTI$T_PART_NAME from the transaction specified by DTI$_TRANSACTION_INFORMATION, DTI$T_TID.

	DTI$K_DELETE_TRANSACTION
	Deletes the the transaction specified by itmlst item DTI$_TRANSACTION_INFORMATION, DTI$T_TID.

	DTI$K_MODIFY STATE
	Modifies the the transaction specified by itmlst item DTI$_TRANSACTION_INFORMATION, DTI$T_TID, using the transaction state specified in DTI$_B_STATE.

itmlst

	OpenVMS usage:
	item_list_3

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by reference

Item list specifying the transaction information that $SETDTI is to use. The itmlst argument is the address of a list of item descriptors, each of which describes an item of information. The list of item descriptors is terminated by a longword of 0. The following diagram depicts the format of a single item descriptor. Each item descriptor in the item list acts as an input argument to $SETDTI and as such is only required to be read only.

The following depicts the format of a single item descriptor:

[image: image13.png]15

tem codle

Buffer length

Buffer acidress.

Retum length acklress

The following table describes the itmlst item descriptor fields:
	Field
	Description

	buffer length
	A word containing a user-supplied integer specifying the length (in bytes) of a buffer from which $SETDTI is to read the information. The length of the buffer needed depends on the item code specified in the item code field of the item descriptor. If the value of buffer length is too small, $SETDTI will return an error status.

	item code
	A word containing a user-supplied symbolic code specifying the search item that $SETDTI is to use. The $DTIDEF macro defines these codes. Each item code is described in the Item Codes section.

	buffer address
	A longword containing the user-supplied address of the buffer from which $SETDTI reads the item information.

	return length address
	This longword that is not used in the item list as all items are read-only.

Item Codes

DTI$_TRANSACTION_INFORMATION

When you specify DTI$_TRANSACTION_INFORMATION, $SETDTI uses the fields in the following table to perform the $SETDTI call. Each function requires a specific set of fields from the transaction record to perform its operation. If one or more of these fields is not present or valid then the $SETDTI call will fail. The fields required by each function are listed in the func argument description.

	Item
	Description

	DTI$B_PART_NAME_LEN
	A byte containing the length of the following participant name field DTI$T_PART_NAME.

	DTI$B_STATE
	A byte containing the state of the transaction. Two states are valid: DTI$K_COMMITTED and DTI$K_ABORTED.

	DTI$T_PART_NAME
	A character field containing DTI$B_PART_NAME_LEN characters that specifies a resource manager name.

	DTI$T_PART_LOG_ID
	Reserved by Compaq.

	DTI$T_TID
	A 16 byte field containing the transaction identifier.

Description

The $SETDTI service can be used either to remove resource managers from transactions, or to modify transaction states.

The $SETDTI service removes resource managers from a single transaction or from all transactions when they no longer have any further interest in a transaction. A call to $SETDTI typically follows a call to $GETDTI that established a search context and returned the state of an unresolved transaction.

When a resource manager is recovering from a system failure it will use $GETDTI to return the state of all unresolved transactions. If the resource manager can recover the transaction, then it needs to be removed from the transaction in the same way it would have been removed had it been able to call $ACK_EVENT with the forget status before the system failure.

To remove a resource manager, $SETDTI uses the following fields from the DTI$_TRANSACTION_INFORMATION item descriptor in the itmlst argument:

· Transaction Identifier (TID)

· Resource Manager name

· Resource Manager log identifier

This information, along with the search context, is used to remove the resource manager from the transaction. If the TID field is zero in the DTI$_TRANSACTION_INFORMATION item descriptor then the resource manager will be removed from all committed transactions in which it was involved.

When searching for a resource manager, a comparison is made of the leftmost bytes in the transaction manager’s log records. This feature enables multiple instances of resource manager classes to be removed from the transaction manager’s log after performing a recovery.

The $SETDTI service can also be used to modify transaction states. It can perform two state transitions: from prepared to committed, or from prepared to aborted. To modify transaction states, $SETDTI uses the following fields from the DTI$_TRANSACTION_INFORMATION item descriptor in the itmlst argument:

· Transaction Identifier (TID)

· Transaction state

To modify a transaction state, first modify the DTI$B_STATE field in the DTI$_TRANSACTION_INFORMATION item descriptor to either DTI$K_COMMITTED and DTI$K_ABORTED. Then specify the function code DTI$K_MODIFY_TRANSACTION to instruct $SETDTI to perform the state transition.

Note that because DECdtm uses a presumed abort protocol, changing the transaction state to aborted is the same as deleting the transaction.

SYSPRV privilege is required to retrieve or modify information about transactions with which the process is not currently associated.

In most cases, the search context remains valid across multiple calls to $SETDTI. That is, a call to $GETDTI may be followed by one or more calls to $SETDTI without the context becoming invalid. However the search context is invalidated when a resource manager is deleted from all transactions by specifying a zero TID.

Condition Values Returned

	SS$_NORMAL
	If returned in R0, the request was successfully queued. If returned in the I/O status block, the service completed successfully.

	SS$_SYNCH
	The service completed successfully and synchronously (returned only if the DDTM$M_SYNC flag is set).

	SS$_ACCVIO
	An argument was not accessible to the caller.

	SS$_BADLOGVER
	There was an invalid or unsupported log version.

	SS$_BADPARAM
	Either the options flags were invalid or the tid argument was omitted but the bid argument was not zero.

	SS$_BADSTATE
	There was an invalid transaction state in the ITMLST. Valid states are DTI$K_COMMITTED and DTI$K_ABORTED.

	SS$_BUGCHECK
	A failure has occurred during the processing of the request.

	SS$_EXASTLM
	The process AST limit (ASTLM) was exceeded.

	SS$_ILLEFC
	The event flag number was invalid.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_INVLOG
	The log format is invalid.

	SS$_NOSUCHFILE
	The transaction manager log cannot be found.

	SS$_NOSUCHNODE
	The subordinate DECnet node is unknown.

	SS$_NOSUCHPART
	The participant is not part of the transaction.

	SS$_NOSUCHTID
	The designated TID is unknown.

	SS$_NOSYSPRV
	The caller does not have the SYSPRV privilege.

	SS$_PROTOCOL
	There is a message protocol error.

	SS$_REMRSRC
	There are insufficient resources at the remote node.

	SS$_UNREACHABLE
	A superior node is unreachable.

$SETDTIW

Sets the process current transaction and removes resource managers from transactions.

$SETDTIW$ always waits for the request to complete before returning to the caller. Apart from this, it is identical to $SETDTI.

Format

SYS$SETDTIW [efn], [flags], iosb, [astadr], [astprm], [contxt], func, itmlst

C Prototype

int sys$setdtiw (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int *contxt, unsigned short int *func, void *itmlst);

$START_BRANCH

Adds a new branch to a transaction.

Format

SYS$START_BRANCH [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,tid ,tm_name ,bid
 [,[timout], [acmode], [tx_class]]

C Prototype

int sys$start_branch (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int tid [4], void *tm_name, unsigned int bid [4], …);

Arguments

efn

	OpenVMS usage:
	ef_number

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Number of the event flag that is set when the service completes. If this argument is omitted, event flag 0 is set.

flags

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Flags specifying options for the service. The flags argument is a longword bit mask in which each bit corresponds to an option flag. The $DDTMDEF macro defines symbolic names for these option flags, which are shown in Table 3–55. All undefined bits must be 0. If this argument is omitted, no flags are set.

Table 3–55 $START_BRANCH Option Flags

	Flag Name
	Description

	DDTM$M_BRANCH_UNSYNCHED
	Specifies that the new branch is unsynchronized.

If this flag is clear, the new branch is synchronized.

	DDTM$M_NONDEFAULT
	Set this flag if you do not want the transaction to be the default transaction of the calling process. If this flag is clear, the transaction becomes the default transaction of the calling process.

An error is returned if this flag is clear and the calling process has an current default transaction.

	DDTM$M_SYNC
	Specifies successful synchronous completion by returning SS$_SYNCH. When SS$_SYNCH is returned, the AST routine is not called, the event flag is not set, and the I/O status block is not filled in.

iosb

	OpenVMS usage:
	io_status_block

	type:
	quadword (unsigned)

	access:
	write only

	mechanism:
	by reference

The I/O status block in which the completion status of the service is returned as a condition value. See the Returns section for the condition values returned.

The following diagram shows the structure of the I/O status block.

[image: image14.png]15

Reserver! by Cornpacy Condition Value,

Reserved by Cormpary

astadr

	OpenVMS usage:
	ast_procedure

	type:
	procedure entry mask

	access:
	call without stack unwinding

	mechanism:
	by reference

The AST routine executed when the service completes, if SS$_NORMAL is returned in R0. The astadr argument is the address of the entry mask of this routine. The routine is executed in the same access mode as that of the caller of the $START_BRANCH service.

astprm

	OpenVMS usage:
	user_arg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The AST parameter passed to the AST routine specified by the astadr argument.

tid

	OpenVMS usage:
	trans_id

	type:
	octaword (unsigned)

	access:
	read only

	mechanism:
	by reference

The identifier (TID) of the transaction to which the new branch will be added.

tm_name

	OpenVMS usage:
	char_string

	type:
	character-coded text string

	access:
	read only

	mechanism:
	by descriptor—fixed-length string descriptor

The name of the node on which the call was made to $ADD_BRANCH that authorized the new branch to be added to the transaction. Note that this cannot be a cluster alias.

bid

	OpenVMS usage:
	branch_id

	type:
	octaword (unsigned)

	access:
	read only

	mechanism:
	by reference

The identifier (BID) of the new branch that is to be added to the transaction.

An BID value of zero is invalid.

timout

	OpenVMS usage:
	date_time

	type:
	quadword (unsigned)

	access:
	read only

	mechanism:
	by reference

Reserved to Compaq.

acmode

	OpenVMS usage:
	access_mode

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The access mode of the new branch in this process. This is the least privileged mode that a caller must be in to remove this branch from the transaction by calling $END_BRANCH. Note that it can be removed from the transaction by calling $ABORT_TRANS from any access mode.

This argument only influences the access mode of the first branch in this process. Subsequent branches have the same access mode as the first.

The access mode of the new branch is the least privileged of:

· The access mode of the caller.

· The access mode specified by the acmode argument.

Note that if a branch already exists in this process, then neither the access mode of the caller nor the access mode specified by the acmode argument may be less privileged than that branch.

The default value of this argument is the access mode of the caller.

tx_class

	OpenVMS usage:
	char_string

	type:
	character-coded text string

	access:
	read only

	mechanism:
	by descriptor—fixed-length string descriptor

A string that specifies the transaction class for the transaction on the local node if the transaction does not already have a transaction class on the local node. This string is passed in the event reports delivered to RMIs and RM participants on the local node.

This argument is ignored if the transaction already has a transaction class on the local node.

This string must be no longer than 31 characters.

Description

The $START_BRANCH system service:

· Adds a new branch running in the calling process to the specified transaction.

· Adds the local DECdtm transaction manager to the specified transaction if the local DECdtm transaction manager is not already a participant in that transaction.

· Sets the default transaction of the calling process to the new transaction, if the DDTM$M_NONDEFAULT flag is clear and the process does not have a default transaction.

· Delivers a transaction started event to each RMI in the calling process that:

· Requested Transaction Started events for the corresponding transaction type (default or non-default), and

· Has an access mode that is the same as or more privileged than that specified in this call to $START_BRANCH.

The new branch should have been previously authorized. Authorization is provided either by a matching call to $JOIN_RM with the DDTM$M_COORDINATOR flag set or by a matching call to $ADD_BRANCH. Two calls, one to $ADD_BRANCH and one to $START_BRANCH or one to $JOIN_RM and one to $START_BRANCH, are said to be matching if the following conditions are true:

· The same TID values are passed to both calls.

· The BID returned by the call to $ADD_BRANCH or $JOIN_RM is the same as that passed to the call to $START_BRANCH.

· The call to $START_BRANCH is made on the node identified by the tm_name argument passed to the call to $ADD_BRANCH or on the node on which the call to $JOIN_RM was made.

· The call to $ADD_BRANCH or $JOIN_RM is made on the node identified by the tm_name argument passed to the call to $START_BRANCH.

$START_BRANCH does not check that there has been a matching call to $ADD_BRANCH or $JOIN_RM unless the tm_name argument passed to $START_BRANCH specifies the local node.

Note The atomicity of the transaction is not guaranteed if there is a call to $START_BRANCH that does not have a matching call to $ADD_BRANCH or $JOIN_RM.

Preconditions for the successful completion of $START_BRANCH are:

· The local node must have a DECdtm transaction log.

· The TP_SERVER process must be running on the local node.

· There must not have been a successful call to $START_BRANCH on the local node that passed the specified BID.

· If the tm_name argument specifies the local node, there must have been a matching call to $ADD_BRANCH or $JOIN_RM on the local node.

· If the DDTM$M_NONDEFAULT flag is clear, the calling process must not have an unended default transaction.

· If this process already contains a branch of this transaction, then the access mode of the caller must be the same as or more privileged than the access mode of that branch.

$START_BRANCH may fail because:

· Preconditions were not met.

· An abort event occurred for the transaction.

· A call to $END_TRANS to end the transaction is in progress and it is too late to add a new branch to the transaction.

· The DDTM$M_NONDEFAULT flag was clear and a call to $SET_DEFAULT_TRANS by the calling process is in progress.

When $START_BRANCH completes successfully:

· A new branch running in the calling process has been added to the transaction.

· All Transaction Started events reported to RMIs in the calling process have been acknowledged.

· If the DDTM$M_NONDEFAULT flag was clear, the transaction is the default transaction of the calling process.

A branch may:

· Invoke resource manager operations, explicitly passing the TID.

· Invoke resource manager operations without specifying the TID, if the transaction is the default transaction of the calling process, and the resource manager supports default transactions.

· Call $ADD_BRANCH to authorize another branch to be added to the transaction.

(The way to invoke a resource manager operation is defined by the interfaces provided by the resource manager – see the resource manager documentation.)

A synchronized branch is removed from the transaction by calling $END_BRANCH, specifying the appropriate BID and TID. An unsynchronized branch is removed from the transaction by DECdtm during commit or abort processing.

The branch is also removed from the transaction (and the transaction aborted):

· On termination of the current image or process.

· On successful completion of a call to $ABORT_TRANS in the calling process that passes the appropriate TID and BID.

There is also a wait form of the service, $START_BRANCHW.

Required Privileges

None

Required Quotas

BYTLM, ASTLM

A.1.2. Condition Values Returned

	SS$_NORMAL
	If returned in R0, the request was successfully queued. If returned in the I/O status block, the service completed successfully.

	SS$_SYNCH
	The service completed successfully and synchronously (returned only if the DDTM$M_SYNC flag is set).

	SS$_ACCVIO
	An argument was not accessible to the caller.

	SS$_ALRCURTID
	Either:

· An attempt was made to make the transaction specified by the tid argument the default transaction (the DDTM$M_NONDEFAULT flag was clear) when the calling process had an unended default transaction.

· The DDTM$M_NONDEFAULT flag was clear and a call to $SET_DEFAULT_TRANS by the calling process was in progress.

	SS$_BADPARAM
	Either the options flags were invalid or the tid argument was omitted but the bid argument was not zero.

	SS$_BRANCHSTARTED
	There has already been a call to $START_BRANCH on the local node specifying that TID and BID (returned only if the node specified by the tm_name argument was the local node).

	SS$_CONNECFAIL
	The node specified by the tm_name argument was not the local node, and there was no communications link between the DECdtm transaction managers on the local node and the specified node.

	SS$_EXASTLM
	The process AST limit (ASTLM) was exceeded.

	SS$_EXQUOTA
	The job buffered I/O byte limit quota (BYTLM) was exceeded.

	SS$_ILLEFC
	The event flag number was invalid.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_INVBUFLEN
	The string passed in the tx_class argument was longer than 31 characters, or the string passed in the tm_name argument was longer than 256 characters.

	SS$_NOLOG
	The local node did not have a transaction log.

	SS$_NOSUCHBID
	Either:

· The specified BID was not returned by any call to $ADD_BRANCH or $JOIN_RM on the local node (returned only if the node specified by the tm_name argument was the local node).

· An BID of zero was supplied.

	SS$_NOSUCHTID
	The local node did not have any branches in the specified transaction (returned only if the node specified by the tm_name argument was the local node).

	SS$_TPDISABLED
	The TP_SERVER process was not running on the local node.

	SS$_WRONGSTATE
	The transaction was in the wrong state for the attempted operation because either:

· An abort event has occurred for the transaction.

· A call to $END_TRANS to end the transaction is in progress and it is now too late to add a new branch to the transaction.

$START_BRANCHW

Adds a new branch to a transaction.

$START_BRANCHW always waits for the request to complete before returning to the caller. Apart from this, it is identical to $START_BRANCH.

Format

SYS$START_BRANCHW [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,tid ,tm_name ,bid
 [,[timout] ,[acmode], [tx_class]]

C Prototype

int sys$start_branchw (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int tid [4], void *tm_name, unsigned int bid [4],
 …);

$START_TRANS

Starts a new transaction.

Format

SYS$START_TRANS [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid] ,[timout] ,
 [acmode] ,[tx_class]]

C Prototype

int sys$start_trans (unsigned int efn, unsigned int flags, struct _iosb *iosb, ...);

Arguments

efn

	OpenVMS usage:
	ef_number

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Number of the event flag set when the service completes. If this argument is omitted, event flag 0 is set.

flags

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Flags specifying options for the service. The flags argument is a longword bit mask in which each bit corresponds to an option flag. The $DDTMDEF macro defines symbolic names for these flags, shown in Table 3–60. All undefined bits must be 0. If this argument is omitted, no flags are set.

Table 3–60 $START_TRANS Option Flags

	Flag Name
	Description

	DDTM$M_NONDEFAULT
	Set this flag if you do not want the new transaction to be the default transaction of the calling process. An error is returned if this flag is set and the tid argument is zero or omitted.

If this flag is clear, the new transaction becomes the default transaction of the calling process.

An error is returned if this flag is clear and the calling process has an unended default transaction.

	DDTM$M_SYNC
	Specifies successful synchronous completion by returning SS$_SYNCH. When SS$_SYNCH is returned, the AST routine is not called, the event flag is not set, and the I/O status block is not filled in.

iosb

	OpenVMS usage:
	io_status_block

	type:
	quadword (unsigned)

	access:
	write only

	mechanism:
	by reference

The I/O status block in which the completion status of the service is returned as a condition value. See the Returns section for the condition values returned.

The following diagram shows the structure of the I/O status block.

[image: image15.png]15

Reserver! by Cornpacy Condition Value,

Reserved by Cormpary

astadr

	OpenVMS usage:
	ast_procedure

	type:
	procedure entry mask

	access:
	call without stack unwinding

	mechanism:
	by reference

The AST routine that is executed when the service completes, if SS$_NORMAL is returned in R0. The astadr argument is the address of the entry mask of this routine. The routine is executed in the same access mode as that of the caller of the $START_TRANS service.

astprm

	OpenVMS usage:
	user_arg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The AST parameter that is passed to the AST routine specified by the astadr argument.

tid

	OpenVMS usage:
	trans_id

	type:
	octaword (unsigned)

	access:
	write only

	mechanism:
	by reference

Address of an octaword in which the identifier (TID) of the new transaction is returned.

No other call to $START_TRANS on any node ever returns the same TID value.

The default value of this argument is zero. An error is returned if the DDTM$M_NONDEFAULT flag is set and this argument is either omitted or zero.

timout

	OpenVMS usage:
	date_time

	type:
	quadword (unsigned)

	access:
	read only

	mechanism:
	by reference

The timeout for the new transaction. This is the time at which the transaction is to be aborted by the DECdtm transaction manager if it has not already committed.

A positive time value specifies an absolute time. The absolute value of a negative time specifies an offset (delta time) from the current time.

If this argument is omitted, the new transaction has no timeout.

acmode

	OpenVMS usage:
	access_mode

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The access mode of the new branch of the new transaction.

An access mode is maintained for each transaction per process. All branches in a transaction in a process have the same access mode. Subsequent operations do not alter it. The access mode of a branch is the least privileged mode in which a successful call to $END_TRANS may be made.

Note that the transaction may be aborted by a call to $ABORT_TRANS from any access mode.

The access mode of the branch is the least privileged of:

• The access mode of the caller.

• The access mode specified by the acmode argument.

If this argument is omitted, the access mode of the new branch is the same as that of the caller.

tx_class

	OpenVMS usage:
	char_string

	type:
	character-coded text string

	access:
	read only

	mechanism:
	by descriptor—fixed-length string descriptor

A string that specifies the transaction class for the new transaction on the local node. This string is passed in the event reports delivered to RMIs and RM participants on the local node.

This string must be no longer than 31 characters. If this argument is omitted or the string is of length zero, the new transaction has no transaction class on the local node. In this case, the transaction’s class on the local node can be specified by a subsequent call to $START_BRANCH on that node.

Description

The $START_TRANS system service starts a new transaction whose commit or abort processing is to be coordinated by the local DECdtm transaction manager. The service

· Adds a branch running in the calling process to the new transaction.

The identifier (BID) of the new branch is 0.

· Sets the default transaction of the calling process to the new transaction, if the DDTM$M_NONDEFAULT flag is clear and the process does not have a default transaction.

· Delivers an event of type Transaction Started to each RMI in the calling process that:

· Requested Transaction Started events, and

· Has an access mode that is the same as or more privileged than that specified in this call to $START_TRANS (see the description of the acmode argument).

The event delivered to all such RMIs is either a default transaction started event or a nondefault transaction started event, depending on whether the DDTM$M_NONDEFAULT flag is clear or not.

Preconditions for the successful completion of $START_TRANS are:

· The local node must have a DECdtm transaction log.

· The TP_SERVER process must be running on the local node.

· If the DDTM$M_NONDEFAULT flag is clear, the calling process must not have an unended default transaction.

$START_TRANS may fail for various reasons, including:

· Preconditions were not met.

· The DDTM$M_NONDEFAULT flag was clear and a call to $SET_DEFAULT_TRANS by the calling process is in progress.

When $START_TRANS completes successfully:

· A new transaction has started, with a unique identifier.

· The transaction has a single branch, with a BID of 0.

· All Transaction Started events reported to RMIs in the calling process have been acknowledged.

· If the DDTM$M_NONDEFAULT flag was clear, the transaction is the default transaction of the calling process.

A branch may:

· Invoke resource manager operations, explicitly passing the TID.

· Invoke resource manager operations without specifying the TID, if the transaction is the default transaction of the calling process, and the resource manager supports default transactions.

· Call $ADD_BRANCH to authorize another branch to be added to the transaction.

(The way to invoke a resource manager operation is defined by the interfaces provided by the resource manager – see the resource manager documentation.)

DECdtm cannot commit the transaction until the process calls $END_TRANS.

The transaction is aborted:

· On termination of the current image or process.

· On successful completion of a call to $ABORT_TRANS in the calling process, specifying a BID of 0.

There is also a wait form of the service, $START_TRANSW.

Required Privileges

None

Required Quotas

BYTLM, ASTLM

Condition Values Returned

	SS$_NORMAL
	If returned in R0, the request was successfully queued. If returned in the I/O status block, the service completed successfully.

	SS$_SYNCH
	The service completed successfully and synchronously (returned only if the DDTM$M_SYNC flag is set).

	SS$_ACCVIO
	An argument was not accessible to the caller.

	SS$_ALRCURTID
	Either:

· An attempt was made to start a default transaction (the DDTM$M_NONDEFAULT flag was clear) when the calling process had an unended default transaction.

· The DDTM$M_NONDEFAULT flag was clear and a call to $SET_DEFAULT_TRANS by the calling process was in progress.

	SS$_BADPARAM
	Either the DDTM$M_NONDEFAULT flag was set and the tid argument was omitted, or the options flags were invalid.

	SS$_CURTIDCHANGE
	The DDTM$M_NONDEFAULT flag was clear and a call to change the default transaction of the calling process was in progress.

	SS$_EXASTLM
	The process AST limit (ASTLM) was exceeded.

	SS$_EXQUOTA
	The job buffered I/O byte limit quota (BYTLM) was exceeded.

	SS$_ILLEFC
	The event flag number was invalid.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_INVBUFLEN
	The string passed in the tx_class argument was longer than 31 characters.

	SS$_NOLOG
	The local node did not have a transaction log.

	SS$_TPDISABLED
	The TP_SERVER process was not running on the local node.

$START_TRANSW

Starts a new transaction.

$START_TRANSW always waits for the request to complete before returning to the caller. Apart from this, it is identical to $START_TRANS.

Format

SYS$START_TRANSW [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid] ,
 [timout] ,[acmode] ,[tx_class]]

C Prototype

int sys$start_transw (unsigned int efn, unsigned int flags, struct _iosb *iosb, ...);

$TRANS_EVENT

Forces a transaction state change for a transaction in which there is at least one RM participant that has set the DDTM$M_COORDINATOR flag.

Format

SYS$TRANS_EVENT [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,tid ,rm_id ,tx_event

C Prototype

int sys$trans_event (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), int astprm,
 unsigned int tid [4], unsigned int *rm_id, unsigned int tx_event);

Arguments

efn

	OpenVMS usage:
	ef_number

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Number of the event flag that is set when the service completes. If this argument is omitted, event flag 0 is set.

flags

	OpenVMS usage:
	mask_longword

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

Reserved to Compaq. This argument must be zero.

iosb

	OpenVMS usage:
	io_status_block

	type:
	quadword (unsigned)

	access:
	write only

	mechanism:
	by reference

The I/O status block in which the completion status of the service is returned as a condition value. See the Returns section for the condition values returned.

The outcome of the state change is indicated by the contents of the I/O status block.

The following diagram shows the structure of the I/O status block.

[image: image16.png]15

Reserver! by Cornpacy

Condition Value.

Abort reason code

astadr

	OpenVMS usage:
	ast_procedure

	type:
	procedure entry mask

	access:
	call without stack unwinding

	mechanism:
	by reference

The AST routine that is executed when the service completes, if SS$_NORMAL is returned in R0. The astadr argument is the address of the entry mask of this routine. The routine is executed in the same access mode as that of the caller of the $TRANS_EVENT service.

astprm

	OpenVMS usage:
	user_arg

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The AST parameter passed to the AST routine specified by the astadr argument.

tid

	OpenVMS usage:
	trans_id

	type:
	octaword (unsigned)

	access:
	read only

	mechanism:
	by reference

The identifier (TID) of transaction to which the state change is to be applied.

rm_id

	OpenVMS usage:
	identifier

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by reference

The identifier of the RMI with which the coordinating RM participant is associated.

tx_event

	OpenVMS usage:
	identifier

	type:
	longword (unsigned)

	access:
	read only

	mechanism:
	by value

The operation to be performed on the transaction. The permitted values and the possible successful outcomes are shown in Table 3–61.

Description

The $TRANS_EVENT system service is used by coordinating RM participants to change the state of transactions.

Preconditions for the successful completion of $TRANS_EVENT include:

· The caller must have the SYSPRV privilege or be in either executive or kernel mode.

· The RM participant must have set the DDTM$M_COORDINATOR flag on the call to $JOIN_RM. Coordinating resource managers cannot join the transaction by calling $ACK_EVENT.

· The access mode of the caller must be the same as or more privileged than that of the transaction within the process.

Table 3–61 Completion Semantics of the $TRANS_EVENT Service

	Operation
	Completion Semantics

	DDTM$K_TX_PREPARE
	A vote has been received from each RM participant and synchronized branch.

The status code returned is the combination of the individual votes. The possible values are:

· SS$_PREPARED. All participants are ready to commit the transaction. Thus all RM participants voted yes and all synchronized branches called $END_BRANCH. Note that a read-only vote from an RM participant is counted as a yes vote but this response is not returned if all RM participants voted read-only. Unsynchronized branches are assumed to be willing to commit. A further operation (commit or abort) is necessary to complete the transaction.

· SS$_FORGET. All participants are ready to permit the transaction to be committed but do not require any further notification of transaction events. Thus no further $TRANS_EVENT calls are required for this transaction. Possible reasons for this response are:

· All RM participants voted read-only.

· The specified transaction (TID) did not exist.

· The specified transaction was already prepared. (Cyclic graph)

· SS$_VETO. The transaction cannot be committed. No further $TRANS_EVENT calls are required for this transaction. One reason why the transaction cannot commit, an abort reason code, is placed in the second longword of the iosb.

	DDTM$K_TX_COMMIT
	The only status code returned on successful completion is SS$_FORGET. Sufficient information has been hardened by the DECdtm transaction manager to commit the transaction.

	DDTM$K_TX_ABORT
	The only status code returned on successful completion is SS$_FORGET. Abort processing has been initiated.

Condition Values Returned

	SS$_NORMAL
	The request was successfully queued. This value is only returned in R0.

	SS$_ACCVIO
	An argument was not accessible to the caller.

	SS$_BADPARAM
	Invalid value for tx_event parameter.

	SS$_EXASTLM
	The process AST limit (ASTLM) was exceeded.

	SS$_FORGET
	No further $TRANS_EVENT calls are required for this transaction.

· If tx_event = DDTM$K_TX_ABORT then abort processing has been initiated.

· If tx_event = DDTM$K_TX_COMMIT then sufficient information has been hardened to commit the transaction.

· If tx_event = DDTM$K_TX_PREPARE then one of the following has occurred:

· All participants voted read-only.

· The tid was not known.

· The rm_id was not known.

	SS$_ILLEFC
	The event flag number was invalid.

	SS$_INSFARGS
	A required argument was missing.

	SS$_INSFMEM
	There was insufficient system dynamic memory for the operation.

	SS$_NOLOG
	The local node did not have a transaction log.

	SS$_NOPRIV
	The specified rm_id was not a coordinator of the specified transaction.

	SS$_NOSYSPRV
	The caller is in user or supervisor mode but did not have SYSPRV set.

	SS$_PREPARED
	All participants are ready to commit the transaction. A further operation (commit or abort) is necessary to complete the transaction.

	SS$_TPDISABLED
	The TP_SERVER process was not running on the local node.

	SS$_VETO
	The tx_event parameter contains the value DDTM$K_TX_PREPARE, and DECdtm or a participant was not in a position to accept an order to commit. One reason why the transaction must abort is supplied in the abort reason code field of the IOSB. No further call to $TRANS_EVENT is needed for a transaction when this condition code is returned.

	SS$_WRONGACMODE
	The access mode of the caller was less privileged than that of a branch of the transaction in this process.

	SS$_WRONGSTATE
	The transaction was in the wrong state for the attempted operation.

· Commit operation when transaction not prepared.

· Any operation while another call is in progress.

$TRANS_EVENTW

Forces a transaction state change for a transaction in which there is at least one RM participant that has specified the DDTM$M_COORDINATOR flag.

$TRANS_EVENTW always waits for the request to complete before returning to the caller. Apart from this, it is identical to $TRANS_EVENT.

Format

SYS$TRANS_EVENTW [efn] ,[flags] ,iosb ,[astadr] ,[astprm] ,tid ,rm_id ,tx_event

C Prototype

int sys$trans_eventw (unsigned int efn, unsigned int flags, struct _iosb *iosb,
 void (*astadr)(__unknown_params), __int64 astprm,
 struct uid *tid, unsigned int *rm_id, unsigned int tx_event);

A
Event Notification Mechanism

The DECdtm transaction manager reports events to an RMI and the RM participants associated with it using ASTs executed in the access mode specified in the call to $DECLARE_RM that created that RMI.

The DECdtm transaction manager creates an event report block, and passes its address to the AST routine in the parameter of the AST. Each event report block contains:

· The identifier of the event report.

· A code that describes the event.

· The identifier (TID) of the transaction.

· The name of the RM participant or RMI.

· The context of the RM participant or RMI.

· Other data that depend on the type of the event.

Table A–1 describes the fields in an event report block, in alphabetical order.

Table A–1 Fields in an Event Report Block

	Symbol
	Description

	DDTM$A_TID_PTR
	Address of the identifier (TID) of the transaction.

	DDTM$L_ABORT_REASON
	Abort reason code (longword).

See Appendix B for a list of possible values. Present only in abort event reports.

	DDTM$L_EVENT_TYPE
	A code that identifies the event (longword).

The following table shows the possible values.

Symbol
Event
DDTM$K_ABORT
Abort
DDTM$K_COMMIT

Commit

DDTM$K_PREPARE

Prepare

DDTM$K_ONE_PHASE_COMMIT

One-phase commit

DDTM$K_STARTED_DEFAULT

Default transaction started

DDTM$K_STARTED_NONDEFAULT

Nondefault transaction started

	DDTM$L_REPORT_ID
	Event report identifier (unsigned longword).

	DDTM$L_RM_CONTEXT
	The context of the RM participant or RMI to which the event report is being delivered (unsigned longword).

	DDTM$Q_PART_NAME
	The name of the RM participant or RMI to which the event report is being delivered (descriptor).

	DDTM$Q_TX_CLASS
	The transaction class of the transaction (descriptor).

Each event report must be acknowledged by calling $ACK_EVENT, specifying the identifier of the report. This acknowledgment need not come from AST context.

The DECdtm transaction manager delivers only one event report at a time to each RM participant. For example, if a prepare event report has been delivered to an RM participant, and the transaction is aborted while the RM participant is doing its prepare processing, then the DECdtm transaction manager does not deliver an abort event report to that RM participant until it has acknowledged the prepare event report by a call to $ACK_EVENT. Note that the DECdtm transaction manager may deliver multiple reports to an RMI.

After acknowledging the event report, the RMI or RM participant should no longer access the event report block.

B
Abort Reason Codes

Table B–1 Abort Reason Codes

	Symbolic Name
	Description

	DDTM$_ABORTED
	Application aborted the transaction without giving a reason.

	DDTM$_COMM_FAIL
	Transaction aborted because a communications link failed.

	DDTM$_INTEGRITY
	Transaction aborted because a resource manager integrity constraint check failed.

	DDTM$_LOG_FAIL
	Transaction aborted because an attempt to write to the transaction log failed.

	DDTM$_ORPHAN_BRANCH
	Transaction aborted because it had an unauthorized branch.

	DDTM$_PART_SERIAL
	Transaction aborted because a resource manager serialization check failed.

	DDTM$_PART_TIMEOUT
	Transaction aborted because a resource manager timeout expired.

	DDTM$_SEG_FAIL
	Transaction aborted because a process or image terminated.

	DDTM$_SERIALIZATION
	Transaction aborted because a serialization check failed.

	DDTM$_SYNC_FAIL
	Transaction aborted because a branch had been authorized for it but had not been added to it.

	DDTM$_TIMEOUT
	Transaction aborted because its timeout expired.

	DDTM$_UNKNOWN
	Transaction aborted — reason unknown.

	DDTM$_VETOED
	Transaction aborted because a resource manager was unable to commit it.

44
45

_1052838757.doc
[image: image1.png]15

Reserver! by Cornpacy

Condition Value.

Abort reason code

