
OpenVMS Alpha Partitioning and Galaxy Guide

Part Number: AA-REZQD-TE

June 2002

Revision/Update Information: This manual supersedes the OpenVMS Alpha Version 7.3
manual.

Software Version: OpenVMS Alpha Version 7.3–1

Operating Systems: OpenVMS Alpha Versions 7.3–1

This guide describes how to use hard partitions, soft partitions (OpenVMS Galaxy), and
resource affinity domains (RADs) with OpenVMS Alpha on AlphaServer systems that support
these features. In addition, it describes how to create, manage, and use an OpenVMS Galaxy
computing environment.

Compaq Computer Corporation
Houston, Texas

© 2002 Compaq Information Technologies Group, L.P.

Compaq, the Compaq logo, Alpha, DECnet, DECwindows, OpenVMS, VAX, and VMS are trademarks of Compaq
Information Technologies Group, L.P. in the U.S. and/or other countries.

Microsoft, Windows, Windows NT, and Windows 2000 are trademarks of Microsoft Corporation in the U.S. and
other countries.

Motif, OSF/1, and UNIX are trademarks of The Open Group in the U.S. and/or other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the U.S.
and other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information in this
document is provided "as is" without warranty of any kind and is subject to change without notice. The warranties
for Compaq products are set forth in the express limited warranty statements accompanying such products.
Nothing herein should be construed as constituting an additional warranty.

ZK6512

The Compaq OpenVMS documentation set is available on CD-ROM.

Contents

Preface

1 Managing Workloads With Partitions and Resource Managemement
1.1 Using Hard and Soft Partitions on OpenVMS Systems 1–1
1.2 OpenVMS Partitioning Guidelines . 1–1
1.3 Hard Partition Requirements and Configuration .. 1–2
1.3.1 Hard Partition Configuration Example 1 .. 1–2
1.3.2 Hard Partition Configuration Example 2 .. 1–4
1.3.3 Hard Partition Configuration Example 3 .. 1–4
1.3.4 Updating Console Firmware on AlphaServer GS80/160/320

Systems .. 1–5
1.4 OpenVMS Galaxy Support .. 1–5
1.5 OpenVMS Application Support for Resource Affinity Domains

(RADs) .. 1–5

2 OpenVMS Galaxy Concepts
2.1 OpenVMS Galaxy Concepts and Components .. 2–1
2.2 OpenVMS Galaxy Features . 2–3
2.3 OpenVMS Galaxy Benefits . 2–4
2.4 OpenVMS Galaxy Version 7.3 Features . 2–5
2.5 OpenVMS Galaxy Advantages .. 2–6
2.6 When OpenVMS Galaxy Is Not the Best Choice . 2–6
2.7 Possible OpenVMS Galaxy Configurations . 2–7
2.7.1 Shared-Nothing Computing Model . 2–7
2.7.2 Shared-Partial Computing Model . 2–7
2.7.3 Shared-Everything Computing Model . 2–8
2.8 What Is a Single-Instance Galaxy? .. 2–8
2.9 OpenVMS Galaxy Configuration Considerations .. 2–9
2.9.1 XMI Bus Support . 2–9
2.9.2 Memory Granularity Restrictions . 2–9
2.9.3 EISA Bus Support . 2–9
2.10 CD Drive Recommendation . 2–10
2.11 Important Cluster Information . 2–10
2.11.1 Becoming an OpenVMS Galaxy Instance .. 2–10
2.11.2 SCSI Cluster Considerations . 2–10
2.12 Security Considerations in an OpenVMS Galaxy Computing

Environment . 2–11
2.13 Configuring OpenVMS Galaxy Instances in Time Zones 2–11
2.14 Developing OpenVMS Galaxy Programs .. 2–12
2.14.1 Locking Programming Interfaces .. 2–12
2.14.2 System Events Programming Interfaces . 2–13
2.14.3 Using SDA in an OpenVMS Galaxy . 2–13
2.14.3.1 Dumping Shared Memory .. 2–13
2.14.3.2 Summary of SDA Command Interface Changes or Additions 2–14

Contents iii

3 NUMA Implications on OpenVMS Applications
3.1 OpenVMS NUMA Awareness . 3–1
3.1.1 Home RAD .. 3–2
3.1.2 System Code Replication .. 3–2
3.1.3 Distributing Global Pages .. 3–2
3.2 Application Resource Considerations .. 3–3
3.2.1 Processes and Shared Data . 3–3
3.2.2 Memory .. 3–3
3.2.3 Sharing and Synchronization .. 3–3
3.2.4 Use of OpenVMS Features . 3–4
3.3 Batch Job Support for NUMA Resource Affinity Domains 3–4
3.3.1 Batch Queue Level RAD Support .. 3–4
3.3.1.1 Examples . 3–4
3.3.2 Job Level RAD Support . 3–5
3.3.2.1 Examples . 3–5
3.3.3 Run-Time Behavior .. 3–6
3.3.3.1 Error Processing . 3–6
3.3.3.2 RAD Modifications On Batch Queues .. 3–6
3.4 RAD Application Programming Interfaces . 3–6
3.5 RAD System Services Summary Table .. 3–7
3.6 RAD DCL Command Summary Table . 3–8
3.7 System Dump Analyzer (SDA) Support for RADs . 3–8
3.7.1 SHOW RAD ... 3–8
3.7.2 SHOW RMD (Reserved Memory Descriptor) . 3–10
3.7.3 SHOW PFN ... 3–10
3.7.4 RAD Support for Hard Affinity .. 3–10

4 Creating an OpenVMS Galaxy on AlphaServer GS140/GS60/GS60E
Systems

5 Creating an OpenVMS Galaxy on an AlphaServer 8400 System
5.1 Step 1: Choose a Configuration and Determine Hardware

Requirements .. 5–1
5.2 Step 2: Set Up Hardware .. 5–1
5.2.1 Overview of KFE72-DA Console Subsystem Hardware 5–2
5.2.2 Installing the KFE72-DA Modules .. 5–2
5.2.2.1 Slide the PCI Card Cage Out .. 5–2
5.2.2.2 Insert Modules and Connect Ribbon Cables 5–2
5.2.2.3 Attaching the Connectors .. 5–3
5.2.3 Slide Shelf Back Into System .. 5–4
5.2.4 Using a Terminal Server .. 5–4
5.2.5 Installing EISA Devices . 5–4
5.3 Step 3: Create a System Disk . 5–5
5.4 Step 4: Install OpenVMS Alpha Version 7.3 .. 5–5
5.4.1 OpenVMS Galaxy Licensing Information .. 5–5
5.5 Step 5: Upgrade the Firmware . 5–5
5.6 Step 6: Set the Environment Variables . 5–6
5.7 Step 7: Start the Secondary Console Devices .. 5–8
5.8 Step 8: Boot the OpenVMS Galaxy .. 5–9

iv Contents

6 Creating an OpenVMS Galaxy on an AlphaServer 8200 System
6.1 Step 1: Choose a Configuration and Determine Hardware

Requirements .. 6–1
6.2 Step 2: Set Up Galaxy Hardware .. 6–1
6.2.1 Installing EISA Devices . 6–1
6.3 Step 3: Create a System Disk . 6–2
6.4 Step 4: Install OpenVMS Alpha Version 7.3 .. 6–2
6.5 Step 5: Upgrade the Firmware . 6–2
6.6 Step 6: Set the Environment Variables . 6–3
6.7 Step 7: Start the Secondary Console Device .. 6–4
6.8 Step 8: Boot the OpenVMS Galaxy .. 6–6

7 Creating an OpenVMS Galaxy on an AlphaServer 4100 System
7.1 Before You Start . 7–1
7.2 Step 1: Confirm the AlphaServer 4100 Configuration 7–2
7.3 Step 2: Install OpenVMS Alpha Version 7.3 .. 7–3
7.4 Step 3: Upgrade the Firmware . 7–3
7.5 Step 4: Set the Environment Variables . 7–3
7.6 Step 5: Initialize the System and Start the Console Devices 7–4

8 Creating an OpenVMS Galaxy on an AlphaServer ES40 System
8.1 Before You Start . 8–1
8.2 Step 1: Confirm the AlphaServer ES40 Configuration 8–2
8.3 Step 2: Install OpenVMS Alpha Version 7.3–1 . 8–3
8.4 Step 3: Upgrade the Firmware . 8–4
8.5 Step 4: Set the Environment Variables . 8–4
8.6 Step 5: Initialize the System and Start the Console Devices 8–5

9 Creating an OpenVMS Galaxy on AlphaServer GS80/160/320 Systems
9.1 Step 1: Choose a Configuration and Determine Hardware

Requirements .. 9–1
9.2 Step 2: Set Up the Hardware . 9–1
9.3 Step 3: Create a System Disk . 9–1
9.4 Step 4: Install OpenVMS Alpha Version 7.3 .. 9–1
9.4.1 OpenVMS Galaxy Licensing Information .. 9–2
9.5 Step 5: Set the Environment Variables . 9–2
9.5.1 AlphaServer GS160 Example .. 9–2
9.5.2 AlphaServer GS320 Example .. 9–3
9.5.3 Environment Variable Descriptions . 9–3
9.6 Step 6: Start the Secondary Console Devices .. 9–5
9.7 Step 7: Initialize the Secondary Consoles . 9–5
9.8 Step 8: Boot the OpenVMS Galaxy .. 9–6

10 Using a Single-Instance Galaxy on Any Alpha System

11 OpenVMS Galaxy Tips and Techniques
11.1 System Auto-Action .. 11–1
11.2 Changing Console Environment variables .. 11–1

Contents v

11.3 Console Hints .. 11–1
11.4 Turning Off Galaxy Mode .. 11–2

12 OpenVMS Galaxy Configuration Utility
12.1 GCU Tour .. 12–2
12.1.1 Creating Galaxy Configuration Models . 12–2
12.1.2 Observation . 12–3
12.1.2.1 Layout Management .. 12–4
12.1.2.2 OpenVMS Galaxy Charts .. 12–4
12.1.3 Interaction .. 12–4
12.2 Managing an OpenVMS Galaxy with the GCU .. 12–5
12.2.1 Independent Instances .. 12–5
12.2.2 Isolated Instances .. 12–5
12.2.3 Required PROXY Access .. 12–6
12.3 Galaxy Configuration Models . 12–7
12.3.1 Active Model . 12–7
12.3.2 Offline Models .. 12–7
12.3.2.1 Example: Creating an Offline Model . 12–8
12.4 Using the GCU Charts . 12–8
12.4.1 Component Identification and Display Properties 12–9
12.4.2 Physical Structure Chart . 12–9
12.4.2.1 Hardware Root . 12–10
12.4.2.2 Ownership Overlay . 12–10
12.4.3 Logical Structure Chart . 12–10
12.4.3.1 Software Root .. 12–11
12.4.3.2 Unassigned Resources .. 12–11
12.4.3.3 Community Resources .. 12–11
12.4.3.4 Instance Resources .. 12–11
12.4.4 Memory Assignment Chart . 12–11
12.4.4.1 Console Fragments .. 12–11
12.4.4.2 Private Fragments .. 12–12
12.4.4.3 Shared Memory Fragments .. 12–12
12.4.5 CPU Assignment Chart . 12–12
12.4.5.1 Primary CPU ... 12–12
12.4.5.2 Secondary CPUs . 12–12
12.4.5.3 Fast Path and Affinitized CPUs .. 12–12
12.4.5.4 Lost CPUs .. 12–12
12.4.6 IOP Assignment Chart .. 12–13
12.4.7 Failover Target Chart . 12–13
12.5 Viewing Component Parameters . 12–13
12.6 Executing Component Commands . 12–14
12.7 Customizing GCU Menus .. 12–14
12.8 Monitoring an OpenVMS Galaxy with DECamds . 12–15
12.9 Running the CPU Load Balancer Program ... 12–15
12.10 Creating an Instance . 12–15
12.11 Dissolving an Instance . 12–15
12.12 Shutdown and Reboot Cycles . 12–16
12.13 Online Versus Offline Models . 12–16
12.14 GCU System Messages . 12–16

13 Installing the Graphical Configuration Manager (GCM)
13.1 Overview ... 13–1

vi Contents

13.2 Installation Prerequisites . 13–2
13.2.1 Software Requirements . 13–2
13.2.2 Hardware Requirements .. 13–2
13.3 Installation Procedure . 13–3
13.3.1 Kits . 13–3
13.3.2 Installing the GCM Server . 13–3
13.3.3 Installing the GCM Client .. 13–5
13.3.3.1 OpenVMS GCM Client . 13–5
13.3.3.2 PC GCM Client .. 13–6
13.3.4 Setting Up the GCM Server .. 13–6
13.4 Starting the GCM Server .. 13–10
13.4.1 Automatic GCM Server Startup . 13–10
13.4.2 Manual GCM Server Startup .. 13–10
13.5 Postinstallation Administrative Tasks .. 13–11
13.5.1 Authorizing GCM Users and Defining the Subscription

Template . 13–11
13.5.2 Managing the Library . 13–12
13.5.3 Custom Banners .. 13–12
13.5.4 System Notices . 13–12
13.5.5 Customizing Commands .. 13–13
13.6 Configuring the Association . 13–13
13.6.1 Consideration . 13–14
13.6.2 Adding Systems to An Association .. 13–14
13.7 Customizing GCM .. 13–15
13.7.1 Defining and Using Commands .. 13–15
13.8 GCM Server Log Files .. 13–16
13.9 Troubleshooting the GCM Server .. 13–16
13.9.1 Obtaining Diagnostic Information . 13–16
13.9.2 Potential Problem Areas .. 13–18
13.9.3 Timeout Detection . 13–18
13.10 Performance . 13–18
13.11 Maintaining the GCM Server . 13–19
13.12 Sample Verbose GCM Server Setup .. 13–19

14 CPU Reassignment
14.1 DCL Reassignment . 14–1
14.2 GCU Drag-and-Drop Reassignment . 14–1
14.3 Intermodal Reassignment . 14–2
14.4 Software Reassignment Using Galaxy Services .. 14–2
14.5 Reassignment Faults . 14–3

15 DCL Commands and Lexical Functions
15.1 DCL Commands . 15–1
15.2 DCL Lexical Functions . 15–3
15.3 DCL Command Examples . 15–5
15.3.1 CPU Commands .. 15–6
15.3.1.1 STOP/CPU/MIGRATE .. 15–6
15.3.1.2 SHOW CPU .. 15–6
15.3.1.3 SET CPU ... 15–7
15.3.2 SHOW MEMORY .. 15–7
15.3.3 Lexical Function Example .. 15–8
15.3.4 INSTALL LIST ... 15–8

Contents vii

15.3.5 INSTALL ADD/WRITABLE .. 15–8
15.3.6 CONFIGURE GALAXY ... 15–8

16 Communicating With Shared Memory
16.1 Shared Memory Cluster Interconnect (SMCI) .. 16–1
16.1.1 SYS$PBDRIVER Port Devices . 16–1
16.1.2 Multiple Clusters in a Single Galaxy . 16–1
16.1.3 SYSGEN Parameters for SYS$PBDRIVER .. 16–2
16.1.3.1 SMCI_PORTS .. 16–2
16.1.4 SMCI_FLAGS .. 16–2
16.2 LAN Shared Memory Device Driver . 16–3

17 Shared Memory Programming Interfaces
17.1 Using Shared Memory . 17–1
17.2 System Services . 17–2
17.2.1 Enhanced Services . 17–2
17.2.2 New Section Flag SEC$M_READ_ONLY_SHPT 17–2
17.3 Galaxywide Global Sections . 17–3

18 OpenVMS Galaxy Device Drivers
18.1 Direct-Mapped DMA Window Changes . 18–1
18.2 How PCI Direct-Mapped DMA Works Prior to OpenVMS Version 7.2 18–1
18.3 How PCI Direct-Mapped DMA Works in Current Versions of

OpenVMS .. 18–1
18.4 IOC$NODE_DATA Changes to Support Nonzero Direct-Mapped

DMA Windows . 18–2

A OpenVMS Galaxy CPU Load Balancer Program
A.1 CPU Load Balancer Overview .. A–1
A.1.1 Required Privileges .. A–1
A.1.2 Build and Copy Instructions . A–1
A.1.3 Startup Options .. A–2
A.1.4 Starting the Load Balancer from the GCU ... A–2
A.1.5 Shutdown Warning .. A–3
A.2 Example Program ... A–3

B Common Values for Environment Variables

Index

Examples
13–1 Sample GCM Server Installation . 13–4
13–2 Directory of GCM Server Files .. 13–4
13–3 OpenVMS GCM Client Installation .. 13–5
13–4 Directory of GCM Client Files .. 13–6
13–5 Sample GCM Server Setup .. 13–7

viii Contents

Figures
1–1 Configuration Example 1 .. 1–2
1–2 Configuration Example 2 .. 1–4
1–3 Configuration Example 3 .. 1–5
2–1 OpenVMS Galaxy Architecture Diagram ... 2–2
2–2 Another Galaxy Architecture Diagram .. 2–3
2–3 Shared-Nothing Computing Model . 2–7
2–4 Shared-Partial Computing Model . 2–8
2–5 Shared-Everything Computing Model . 2–8
5–1 Attaching Ribbon Cables .. 5–3
5–2 Connectors . 5–4
18–1 PCI-Based DMA ... 18–1
18–2 OpenVMS DMA ... 18–2

Tables
2–1 Galaxy System Services for Lock Programming . 2–12
2–2 Galaxy System Services for Events Programming . 2–13
2–3 Definitions of Bits in DUMPSTYLE ... 2–14
13–1 Sample Worksheet for A Simple Association . 13–13
15–1 CPU-Related DCL Commands .. 15–1
15–2 RAD-Related DCL Commands .. 15–2
15–3 Other DCL Commands . 15–3
15–4 Galaxy F$GETSYI Item Codes . 15–3
15–5 Partitioning F$GETSYI Item Codes . 15–3
15–6 SMP F$GETSYI Item Codes .. 15–4
15–7 RAD F$GETJPI Item Code .. 15–5
15–8 RAD F$GETSYI Item Codes .. 15–5
B–1 Common Values for Environment Variables .. B–1

Contents ix

Preface

The OpenV MS Alpha Partitioning and Galaxy Guide describes how customers can
take advantage of the partitioning and OpenVMS Galaxy capabilities available in
OpenVMS Alpha Version 7.3–1.

The information in this document applies to OpenVMS Alpha systems only; it does
not apply ro OpenVMS VAX systems.

Intended Audience

This guide is intended for system managers, application programmers, technical
consultants, data center managers, and anyone else who wants to learn about
OpenVMS Galaxy and the partitioning capabilities of OpenVMS Alpha.

Document Structure

This guide introduces OpenVMS partitioning concepts and features on the
hardware platforms that support them. It also explains how to use the OpenVMS
Galaxy capabilities available in OpenVMS Alpha Version 7.3–1.

This guide contains the following chapters and appendixes:

Chapter 1 describes how to use hard and soft partitions and the OpenVMS support
for resource affinity domains (RADs).

Chapter 2 describes the OpenVMS Galaxy concepts and highlights the features
available in OpenVMS Version 7.3–1.

Chapter 3 discusses the nonuniform memory access (NUMA) implications on
OpenVMS applications.

Chapter 4 describes how to create an OpenVMS Galaxy on AlphaServer
GS140/GS60/GS60E systems.

Chapter 5 describes how to create an OpenVMS Galaxy on an AlphaServer 8400
system.

Chapter 6 describes how to create an OpenVMS Galaxy on an AlphaServer 8200
system.

Chapter 7 describes how to create an OpenVMS Galaxy on an AlphaServer 4100
system.

Chapter 8 describes how to create an OpenVMS Galaxy on an AlphaServer ES40
system.

Chapter 9 describes how to create an OpenVMS Galaxy on AlphaServer
GS80/160/320 systems.

Chapter 10 discusses how to use a single-instance Galaxy on any Alpha system.

Chapter 11 discusses OpenVMS Galaxy tips and techniques.

Chapter 12 describes the OpenVMS Galaxy configuration utility.

Chapter 13 describes the OpenVMS Graphical Configuration Manager.

Chapter 14 discusses CPU reassignment.

Preface xi

Chapter 15 describes the DCL commands that are useful for managing an
OpenVMS Galaxy.

Chapter 16 describes how to communicate with shared memory.

Chapter 17 discusses the shared memory programming interfaces.

Chapter 18 describes the OpenVMS Galaxy device drivers.

Appendix A contains an OpenVMS Galaxy load balancer program example.

Appendix B lists the common values for environment variables.

The OpenVMS Alpha Partitioning and Galaxy Guide assumes that readers
are familiar with OpenVMS concepts and operation, and it does not cover basic
OpenVMS information.

Related Documents

The following manuals contains OpenVMS information that might be useful for
partitioned computing environments:

• OpenVMS Alpha Upgrade and Installation

• OpenVMS Cluster Systems

• OpenVMS Alpha System Analysis Tools Manual

• OpenVMS License Management Utility Manual

For additional information about Compaq OpenVMS products and services, see the
Compaq web site at the following URL:

http://www.openvms.compaq.com

Reader’s Comments

Compaq welcomes your comments on this manual. Please send comments to either
of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation

Visit the following World Wide Web address for information about how to order
additional documentation:

http://www.openvms.compaq.com/

For Additional Information

For additional information about Compaq OpenVMS products and services, access
the Compaq website at the following location:

http://www.openvms.compaq.com/

xii Preface

Conventions

In this manual:

• Instance refers to a copy of the OenVMS Alpha operating system.

• OpenVMS Galaxy and Galaxy refer to the Compaq OpenVMS Galaxy
Software Architecture on OpenVMS.

• DECwindows and DECwindows Motif refer to DECwindows Motif for
OpenVMS software.

The following conventions are used in this manual:

Ctrl/ x Indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

PF1x A sequence such as PF1x indicates that you must first
press and release the key labeled PF1 and then press and
release another key or a pointing device button.

Return In an example, a key name enclosed in a box indicates that
you press that key.

…
A horizontal ellipsis in examples indicates one of the
following possibilities:

• Additional optional arguments in a statement have
been omitted.

• The preceding item or items can be repeated one or
more times.

• Additional parameters, values, or other information
can be entered.

...
A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that
you must enclose choices in parentheses if you specify
more than one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items. Do
not type the brackets on the command line. However, you
must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in
an assignment statement.

| In command format descriptions, vertical bars separate
choices within brackets or braces. Within brackets, the
choices are optional; within braces, at least one choice is
required. Do not type the vertical bars on the command
line.

Preface xiii

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

Type This typeface represents the introduction of a new term.
It also represents the name of an argument, an attribute,
or a reason.

italics Italic text indicates important information, complete titles
of manuals, or variables. Variables include information
that varies in system output (Internal error number), in
command lines (/PRODUCER=name), and in command
parameters in text (where (dd) represents the predefined
par code for the device type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a
routine, the name of a file, or the abbreviation for a system
privilege.

Monospace text Monospace type indicates code examples and interactive
screen displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names of
independently compiled external functions and files, syntax
summaries, and references to variables or identifiers
introduced in an example.

– A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xiv Preface

1
Managing Workloads With Partitions and

Resource Managemement

OpenVMS customers use systems that support hard and soft partitions in many
different ways. To most effectively use these systems, customers can decide which
configuration options best meet their computing and application needs.

This chapter describes how to use hard and soft partitions and the new OpenVMS
support for resource affinity domains (RADs) to ensure that applications run
as efficiently as possible on the new AlphaServer systems.

1.1 Using Hard and Soft Partitions on OpenVMS Systems

Hard partitioning is a physical separation of computing resources by
hardware-enforced access barriers. It is impossible to read or write across a hard
partition boundary. There is no resource sharing between hard partitions.

Soft partitioning is a separation of computing resources by software-controlled
access barriers. Read and write access across a soft partition boundary is
controlled by the operating system. OpenVMS Galaxy is an implementation of
soft partitioning.

The way that customers choose to partition their new AlphaServer GS series
systems depends on their computing environments and application requirements.
When deciding how to configure an OpenVMS system that supports partitioning,
customers need to consider the following questions:

• How many hard partitions do I need?

• How many soft partitions do I need?

• How small can I make the partitions?

1.2 OpenVMS Partitioning Guidelines

When deciding whether to use hard or soft partitons on the new AlphaServer
GS series systems, note the following:

• Hard partitions must be on quad building block (QBB) boundaries. A hard
partition can contain more than one QBB.

• Soft partitions (Galaxy instances) do not have to be on QBB boundaries, but
your configuration will be easier to understand and maintain if they are.

• Each partition (hard or soft) must have its own console line. Note that each
QBB in the system can have one console line in it. Therefore, the maximum
number of partitions (hard or soft) in the system equals the number of QBBs in
the system.

• You can have multiple soft partitions within a hard partition.

• You only need one cluster license for the entire AlphaServer GS series system. It
does not matter how many instances exist or how they are clustered, internally
or externally. Note that this is different from the AlphaServer 8400 system.

Managing Workloads With Partitions and Resource Managemement 1–1

1.3 Hard Partition Requirements and Configuration

Each hard partition requires the following:

• A standard COM1 UART console line for each partition.

• A PCI drawer for each partition.

• An I/O module per partition.

• At least one CPU module per partition.

• At least one memory module per partition.

Memory options should be selected in the context of an application’s sensitivity
to memory bandwidth and memory capacity, and the number of hardware
partitions. This determines the number of memory base modules and upgrades
needed. The total capacity required determines the size of the arrays to be
chosen.

Memory modules should be configured in powers of 2: That is, 0, 1, 2, or 4 base
modules in a QBB. Upgrades should also be installed in powers of 2: 0, 1, 2,
or 4 base modules in a QBB.

The following sections describe three hard partition configuration examples:

• Example configuration 1 has four QBBs and four hard partitions. Each hard
partition contains one QBB.

• Example configuration 2 has four QBBs and two hard partitions. Each hard
partition contains two QBBs.

• Example configuration 3 has four QBBs and two hard partitions. One partition
contains one QBB, and the other contains three QBBs.

For more information about the partitioning procedures described in this section,
see the AlphaServer GS80/160/320 Firmware Reference Manual.

1.3.1 Hard Partition Configuration Example 1

The example configuration in Figure 1–1 uses four QBBs to configure four hard
partitions. Each hard partition contains one QBB.

Figure 1–1: Configuration Example 1

NODE HP QBB

WILD7 0 0
WILD8 1 1
WILD9 2 2
WILD10 3 3

VM-1061A-AI

To configure an AlphaServer GS160 system with four hard partitions, enter the
following sequence of SCM commands.

From the SCM console, enter the following settings for the hp NVRAM variables.
Note that the values are bit masks.

SCM_E0> power off -all

SCM_E0> set hp_count 4
SCM_E0> set hp_qbb_mask0 1
SCM_E0> set hp_qbb_mask1 2

1–2 Managing Workloads With Partitions and Resource Managemement

SCM_E0> set hp_qbb_mask2 4
SCM_E0> set hp_qbb_mask3 8
SCM_E0> set hp_qbb_mask4 0
SCM_E0> set hp_qbb_mask5 0
SCM_E0> set hp_qbb_mask6 0
SCM_E0> set hp_qbb_mask7 0

SCM_E0> power on -all

You can also power on or off individual hard partitions. For example, using this
configuration, enter:

SCM_E0> power off -all
SCM_E0> set hp_count 4
SCM_E0> set hp_qbb_mask0 1
SCM_E0> set hp_qbb_mask1 2
SCM_E0> set hp_qbb_mask2 4
SCM_E0> set hp_qbb_mask3 8
SCM_E0> set hp_qbb_mask4 0
SCM_E0> set hp_qbb_mask5 0
SCM_E0> set hp_qbb_mask6 0
SCM_E0> set hp_qbb_mask7 0
SCM_E0> power on -partition 0
SCM_E0> power on -partition 1
SCM_E0> power on -partition 2
SCM_E0> power on -partition 3

During the powering up phases of each hard partition, status information is
displayed showing how the partitions are coming on line. Pay close attention to
this information and confirm that there are no failures during this process.

As each hard partition comes on line, you can start working with that hard
partition’s console device. Also note, that depending on the setting of the NVRAM
variable AUTO_QUIT_SCM, each hard partition’s console comes on line in either
the SCM or SRM console mode.

From each hard partition’s console, enter into the SRM console and configure any
console variables specific to that hard partition. After that, boot OpenVMS in each
hard partition according to standard OpenVMS procedures. For example:

The typical hard partition 0 SRM console settings for OpenVMS are:

P00>>>show bootdef_dev
bootdef_dev dkb0.0.0.3.0
P00>>>show boot_osflags
boot_osflags 0,0
P00>>>show os_type
os_type OpenVMS

The typical hard partition 1 SRM console settings for OpenVMS are:

P00>>>show bootdef_dev
bootdef_dev dkb0.0.0.3.0
P00>>>show boot_osflags
boot_osflags 1,0
P00>>>show os_type
os_type OpenVMS

The typical hard partition 2 SRM console settings for OpenVMS are:

P00>>>show bootdef_dev
bootdef_dev dkb0.0.0.3.0
P00>>>show boot_osflags

Managing Workloads With Partitions and Resource Managemement 1–3

boot_osflags 2,1
P00>>>show os_type
os_type OpenVMS

The typical hard partition 3 SRM console settings for Compaq Tru64 UNIX are:

P00>>>show bootdef_dev
bootdef_dev dka0.0.0.1.16
P00>>>show boot_osflags
boot_osflags A
P00>>>show os_type
os_type UNIX

1.3.2 Hard Partition Configuration Example 2

The example configuration in Figure 1–2 uses four QBBs to configure two hard
partitions. Each hard partition contains two QBBs.

Figure 1–2: Configuration Example 2

NODE HP QBB

WILD7 0 0, 1
WILD8 1 2, 3

VM-1063A-AI

To configure an AlphaServer GS160 with two hard partitions, perform the following
sequence of SCM commands.

From the SCM console, enter the following settings for the hp NVRAM variables:

SCM_E0> power off -all

SCM_E0> set hp_count 2
SCM_E0> set hp_qbb_mask0 3
SCM_E0> set hp_qbb_mask1 c
SCM_E0> set hp_qbb_mask2 0
SCM_E0> set hp_qbb_mask3 0
SCM_E0> set hp_qbb_mask4 0
SCM_E0> set hp_qbb_mask5 0
SCM_E0> set hp_qbb_mask6 0
SCM_E0> set hp_qbb_mask7 0

SCM_E0> power on -all

As each hard partition comes on line, you can start working with that hard
partition’s console device.

From each hard partition’s console, you enter, as in configuration example 1,
into the SRM console, and configure any console variables specific to that hard
partition, and then boot OpenVMS in each hard partition.

1.3.3 Hard Partition Configuration Example 3

As in configuration example 2, the configuration in Figure 1–3 uses four QBBs to
configure two hard partitions; the only difference is the changing of the number of
QBBs per hard partition.

1–4 Managing Workloads With Partitions and Resource Managemement

Figure 1–3: Configuration Example 3

NODE HP QBB

WILD7 0 0, 1, 2
WILD8 1 3

VM-1062A-AI

To configure an AlphaServer GS160 system, perform the following sequence of
SCM commands.

From the SCM console, enter the following settings for the hp NVRAM variables:

SCM_E0> power off -all

SCM_E0> set hp_count 2
SCM_E0> set hp_qbb_mask0 7
SCM_E0> set hp_qbb_mask1 8
SCM_E0> set hp_qbb_mask2 0
SCM_E0> set hp_qbb_mask3 0
SCM_E0> set hp_qbb_mask4 0
SCM_E0> set hp_qbb_mask5 0
SCM_E0> set hp_qbb_mask6 0
SCM_E0> set hp_qbb_mask7 0

SCM_E0> power on -all

As in the other examples, as each hard partition comes on line, you can start
working with that hard partition’s console device.

From each hard partition’s console, you enter, as in configuration example 1,
into the SRM console, and configure any console variables specific to that hard
partition, and then boot OpenVMS in each hard partition.

1.3.4 Updating Console Firmware on AlphaServer GS80/160/320 Systems

To update the SRM console firmware on a system that is hard partitioned, you
must do so separately for each hard partition. There is no way to update all of the
firmware on each partition at one time.

1.4 OpenVMS Galaxy Support

OpenVMS Galaxy is an implementation of soft partitioning. For information about
OpenVMS Galaxy concepts, see Chapter 2.

To create multiple soft partitions within a single hard partition, use the standard
Galaxy procedures as described in Chapter 9.

Note that the Galaxy ID is within the hard partition. That is, if you have two
hard partitions and you run Galaxy in both, each Galaxy will have its own unique
Galaxy ID. Keep this in mind when you use network management tools; they will
identify two Galaxy environments in this case.

1.5 OpenVMS Application Support for Resource Affinity
Domains (RADs)

The large amount of physical memory in the new AlphaServer GS series systems
provides opportunities for extremely large databases to be completely in memory.
The AlphaServer nonuniform memory access (NUMA) system architecture

Managing Workloads With Partitions and Resource Managemement 1–5

provides the bandwidth to efficiently access this large amount of memory. NUMA
is an attribute of a system in which the access time to any given physical memory
is not the same for all CPUs.

In OpenVMS Alpha Version 7.2–1H1, OpenVMS engineering added NUMA
awareness to OpenVMS memory management and process scheduling. This
capability (application support for RADs) ensures that applications running in a
single instance of OpenVMS on multiple QBBs can execute as efficiently as possible
in a NUMA environment.

The operating system treats the hardware as a set of resource affinity domains
(RADs). A RAD is a set of hardware components (CPUs, memory, and I/O) with
common access characteristics. On AlphaServer GS80/160/320 systems, a RAD
corresponds to a quad building block (QBB). A CPU references memory in the same
RAD approximately three times faster than it references memory in another RAD.
Therefore, it is important to keep the code being executed and the memory being
referenced in the same RAD as much as possible while not giving some processes a
consistently unfair advantage. Good location is the key to good performance, but it
must be as fair as possible when fairness is important.

The OpenVMS scheduler and the memory management subsystem work together
to achieve the best possible location by:

• Assigning each process a preferred or “home” RAD.

• Assigning process-private pages from the home RAD’s memory.

• Usually scheduling a process on a CPU in its home RAD.

• Replicating operating system read-only code on each RAD.

• Distributing global pages over RADs.

• Striping reserved memory over RADs.

For more information about using the OpenVMS RAD application programming
interfaces, see Chapter 3.

1–6 Managing Workloads With Partitions and Resource Managemement

2
OpenVMS Galaxy Concepts

The Compaq Galaxy Software Architecture on OpenVMS Alpha lets you run
multiple instances of OpenVMS in a single computer. You can dynamically reassign
system resources, mapping compute power to applications on an as-needed
basis—without having to reboot the computer.

This chapter describes OpenVMS Galaxy concepts and highlights the features
available in OpenVMS Alpha Version 7.3.

2.1 OpenVMS Galaxy Concepts and Components

With OpenVMS Galaxy, software logically partitions CPUs, memory, and I/O
ports by assigning them to individual instances of the OpenVMS operating system.
This partitioning, which a system manager directs, is a software function; no
hardware boundaries are required. Each individual instance has the resources it
needs to execute independently. An OpenVMS Galaxy environment is adaptive in
that resources such as CPUs can be dynamically reassigned to different instances
of OpenVMS.

The Galaxy Software Architecture on OpenVMS includes the following hardware
and software components:

Console

The console on an OpenVMS system is comprised of an attached terminal and a
firmware program that performs power-up self-tests, initializes hardware, initiates
system booting, and performs I/O services during system booting and shutdown.
The console program also provides run-time services to the operating system for
console terminal I/O, environment variable retrieval, NVRAM (nonvolatile random
access memory) saving, and other miscellaneous services.

In an OpenVMS Galaxy computing environment, the console plays a critical role
in partitioning hardware resources. It maintains the permanent configuration
in NVRAM and the running configuration in memory. The console provides
each instance of the OpenVMS operating system with a pointer to the running
configuration data.

Shared memory

Memory is logically partitioned into private and shared sections. Each operating
system instance has its own private memory; that is, no other instance maps
those physical pages. Some of the shared memory is available for instances of
OpenVMS to communicate with one another, and the rest of the shared memory
is available for applications.

The Galaxy Software Architecture is prepared for a nonuniform memory access
(NUMA) environment and, if necessary, provides special services for such systems
to achieve maximum application performance.

CPUs

In an OpenVMS Galaxy computing environment, CPUs can be reassigned between
instances.

OpenVMS Galaxy Concepts 2–1

I/O

An OpenVMS Galaxy has a highly scalable I/O subsystem because there are
multiple, primary CPUs in the system—one for each instance. Also, OpenVMS
currently has features to distribute some I/O to secondary CPUs in an SMP system.

Independent instances

One or more OpenVMS instances can execute without sharing any resources in
an OpenVMS Galaxy. An OpenVMS instance that does not share resources is
called an independent instance.

An independent instance of OpenVMS does not participate in shared memory use.
Neither the base operating system nor its applications access shared memory.

An OpenVMS Galaxy can consist solely of independent instances; such a system
would resemble traditional mainframe-style partitioning. Architecturally,
OpenVMS Galaxy is based on an SMP hardware architecture. It assumes that
CPUs, memory, and I/O have full connectivity within the machine and that the
memory is cache coherent. Each subsystem has full access to all other subsystems.

As shown in Figure 2–1, Galaxy software looks at the resources as if they were
a pie. The various resources (CPUs, private memory, shared memory, and I/O)
are arranged as concentric bands within the pie in a specific hierarchy. Shared
memory is at the center.

Figure 2–1: OpenVMS Galaxy Architecture Diagram

Private
Memory

CPU

I/O

VM-0004A-AI

Shared
Memory

Galaxy supports the ability to divide the pie into multiple slices, each of
disparate size. Each slice, regardless of size, has access to all of shared memory.
Furthermore, because software partitions the pie, you can dynamically vary the
number and size of slices.

In summary, each slice of the pie is a separate and complete instance of the
operating system. Each instance has some amount of dedicated private memory,
a number of CPUs, and the necessary I/O. Each instance can see all of shared
memory, which is where the application data resides. System resources can be
reassigned between the instances of the operating system without rebooting.

Another possible way to look at the Galaxy computing model is to think about how
to divide a system’s resources.

For example, the overall sense of Figure 2–2 is that the proportion by which one
resource is divided between instances is the proportion by which each of the other
resources must be divided.

2–2 OpenVMS Galaxy Concepts

Figure 2–2: Another Galaxy Architecture Diagram

I/OCPU

Instance 1

Instance 2

Instance 3

VM-0303A-AI

Shared Memory

Physical
Memory

M1

M2

M3

C1

C2

C3

I1

I2

I3

2.2 OpenVMS Galaxy Features

An evolution in OpenVMS functionality, OpenVMS Galaxy leverages proven
OpenVMS Cluster, symmetric multiprocessing (SMP), and performance capabilities
to offer greater levels of performance, scalability, and availability with extremely
flexible operational capabilities.

Clustering

Fifteen years of proven OpenVMS Cluster technology facilitates communication
among clustered instances within an OpenVMS Galaxy.

An OpenVMS cluster is a software concept. It is a set of coordinated OpenVMS
operating systems, one per computer, communicating over various communications
media to combine the processing power and storage capacity of multiple computers
into a single, shared-everything environment.

An OpenVMS Galaxy is also a software concept. However, it is a set of coordinated
OpenVMS operating systems, in a single computer, communicating through
shared memory. An instance of the operating system in an OpenVMS Galaxy can
be clustered with other instances within the Galaxy or with instances in other
systems.

An OpenVMS Galaxy is a complete system in and of itself. Although an OpenVMS
Galaxy can be added to an existing OpenVMS cluster in the same way that nodes
can be added to a cluster today, the focus of the OpenVMS Galaxy architecture is
the single system. An application running totally within an OpenVMS Galaxy can
take advantage of performance opportunities not present in multisystem clusters.

OpenVMS Galaxy Concepts 2–3

SMP

Any instance in an OpenVMS Galaxy can be an SMP configuration. The number of
CPUs is part of the definition of an instance. Because an instance in the OpenVMS
Galaxy is a complete OpenVMS operating system, all applications behave the same
as they would on a traditional, single-instance computer.

CPU reassignment

A CPU can be dynamically reassigned from one instance to another while all
applications on both instances continue to run. Reassignment is realized by three
separate functions: stopping, reassigning, and starting the CPU in question.
As resource needs of applications change, the CPUs can be reassigned to the
appropriate instances. There are some restrictions; for example, the primary CPU
in an instance cannot be reassigned, and a CPU cannot specifically be designated
to handle certain interrupts.

Dynamic reconfiguration

Multiple instances of the OpenVMS operating system allow system managers to
reassign processing power to the instances whose applications most need it. As
that need varies over time, so can the configuration. OpenVMS allows dynamic
reconfiguration while all instances and their applications continue to run.

2.3 OpenVMS Galaxy Benefits
Many of the benefits of OpenVMS Galaxy technology result directly from running
multiple instances of the OpenVMS operating system in a single computer.

With several instances of OpenVMS in memory at the same time, an OpenVMS
Galaxy computing environment gives you quantum improvements in:

• Compatibility—Existing applications run without changes.

• Availability—Presents opportunities to upgrade software and expand system
capacity without down time.

• Scalability—Offers scaling alternatives that improve performance of SMP and
cluster environments.

• Adaptability—Physical resources can be dynamically reassigned to meet
changing workload demands.

• Cost of ownership—Fewer computer systems reduce system management
requirements, floor space, and more.

• Performance—Eliminates many bottlenecks and provides more I/O
configuration possibilities.

The following descriptions provide more details about these benefits.

Compatibility

Existing single-system applications run without changes on instances in an
OpenVMS Galaxy. Existing OpenVMS cluster applications also run without
changes on clustered instances in an OpenVMS Galaxy.

Availability

An OpenVMS Galaxy system is more available than a traditional,
single-system-view, SMP system because multiple instances of the operating
system control hardware resources.

OpenVMS Galaxy allows you to run different versions of OpenVMS (Version
7.2 and later) simultaneously. For example, you can test a new version of the

2–4 OpenVMS Galaxy Concepts

operating system or an application in one instance while continuing to run the
current version in the other instances. You can then upgrade your entire system,
one instance at a time.

Scalability

System managers can assign resources to match application requirements as
business needs grow or change. When a CPU is added to a Galaxy configuration, it
can be assigned to any instance of OpenVMS. This means that applications can
realize 100 percent of a CPU’s power.

Typical SMP scaling issues do not restrict an OpenVMS Galaxy. System managers
can define the number of OpenVMS instances, assign the number of CPUs in each
instance, and control how they are used.

Additionally, a trial-and-error method of evaluating resources is a viable strategy.
System managers can reassign CPUs among instances of OpenVMS until the most
effective combination of resources is found. All instances of OpenVMS and their
applications continue to run while CPUs are reassigned.

Adaptability

An OpenVMS Galaxy is highly adaptable because computing resources can be
dynamically reassigned to other instances of the operating system while all
applications continue to run.

Reassigning CPUs best demonstrates the adaptive capability of an OpenVMS
Galaxy computing environment. For example, if a system manager knows that
resource demands change at certain times, the system manager can write a
command procedure to reassign CPUs to other instances of OpenVMS and submit
the procedure to a batch queue. The same could be done to manage system load
characteristics.

In an OpenVMS Galaxy environment, software is in total control of assigning and
dynamically reassigning hardware resources. As additional hardware is added to
an OpenVMS Galaxy system, resources can be added to existing instances; or new
instances can be defined without affecting running applications.

Cost of ownership

An OpenVMS Galaxy presents opportunities to upgrade existing computers and
expand their capacity, or to replace some number of computers, whether they
are cluster members or independent systems, with a single computer running
multiple instances of the operating system. Fewer computers greatly reduces
system management requirements as well as floor space.

Performance

An OpenVMS Galaxy can provide high commercial application performance by
eliminating many SMP and cluster-scaling bottlenecks. Also, the distribution
of interrupts across instances provides many I/O configuration possibilities; for
example, a system’s I/O workload can be partitioned so that certain I/O traffic
is done on specific instances.

2.4 OpenVMS Galaxy Version 7.3 Features

With OpenVMS Alpha Version 7.3, you can create an OpenVMS Galaxy
environment that allows you to:

• Run eight instances on an AlphaServer GS320.

• Run four instances on an AlphaServer GS160.

OpenVMS Galaxy Concepts 2–5

• Run two instances on an AlphaServer GS160.

• Run three instances of OpenVMS on AlphaServer GS140 or 8400 systems.

• Run two instances of OpenVMS on AlphaServer GS60, GS60E, GS80, 8200,
4100, or ES40 systems.

• Reassign CPUs between instances.

• Perform independent booting and shutdown of instances.

• Use shared memory for communication between instances.

• Cluster instances within an OpenVMS Galaxy using the shared memory
cluster interconnect.

• Cluster instances with non-Galaxy systems.

• Create applications using OpenVMS Galaxy APIs for resource management,
event notification, locking for synchronization, and shared memory for global
sections.

• Use the Galaxy Configuration Utility (GCU) to view and control the OpenVMS
Galaxy environment. (See Chapter Chapter 12 for more information.)

• Run a single-instance OpenVMS Galaxy on any Alpha system for application
development.

2.5 OpenVMS Galaxy Advantages

OpenVMS Galaxy offers you several technical advantages if you are looking to
improve your ability to manage unpredictable, variable, or growing IT workloads.
OpenVMS Galaxy technology provides the most flexible way to dynamically
reconfigure and manage system resources. An integrated hardware and software
solution, OpenVMS Galaxy allows system managers to perform tasks such as
reassigning individual CPUs through a simple drag and drop procedure.

An OpenVMS Galaxy computing environment is ideal for high-availability
applications, such as:

• Database servers

• Transaction processing systems

• Data warehousing

• Data mining

• Internet servers

• NonStop eBusiness solutions

An OpenVMS Galaxy computing environment is also a natural evolution for
current OpenVMS users with clusters or multiple sparsely configured systems.

An OpenVMS Galaxy is attractive for growing organizations with varying
workloads—predictable or unpredictable.

2.6 When OpenVMS Galaxy Is Not the Best Choice

Even though OpenVMS Galaxy technology provides the most flexible way to
dynamically reconfigure and manage system resources, there are times when a
Galaxy system is not the best technical choice for an organization. OpenVMS
Galaxy is not the best choice if your computing needs are focused on any of the
following:

• Single stream nonthreaded computation.

2–6 OpenVMS Galaxy Concepts

• Situations where individual CPUs must be physically separate to be near other
equipment, such as for process control.

• If traditional SMP will not work, then OpenVMS Galaxy is not the answer.

2.7 Possible OpenVMS Galaxy Configurations

An OpenVMS Galaxy computing environment lets customers decide how much
cooperation exists between instances in a single computer system.

In a shared-nothing computing model, the instances do not share any resources;
operations are isolated from one another (see Section Section 2.7.1).

In a shared-partial computing model, the instances share some resources and
cooperate in a limited way (see Section Section 2.7.2).

In a shared-everything model, the instances cooperate fully and share all
available resources, to the point where the operating system presents a single
cohesive entity to the network (see Section Section 2.7.3).

2.7.1 Shared-Nothing Computing Model

In a shared-nothing configuration (shown in Figure 2–3), the instances of
OpenVMS are completely independent of each other and are connected through
external interconnects, as though they were separate computers.

With Galaxy, all available memory is allocated into private memory for each
instance of OpenVMS. Each instance has its own set of CPUs and an appropriate
amount of I/O resources assigned to it.

Figure 2–3: Shared-Nothing Computing Model

Network Interconnect

Storage Interconnect

VM-0006A-AI

CPUs
8 9 10 11

I/O

Instance C

CPUs

I/O

CPUs

I/O

0 1 2 3 4 5 6 7

Instance BInstance A

Private Memory Private Memory Private Memory Code and data

2.7.2 Shared-Partial Computing Model

In a shared-partial configuration (shown in Figure 2–4), a portion of system
memory is designated as shared memory, which each instance can access. Code
and data for each instance are contained in private memory. Data that is shared by
applications in several instances is stored in shared memory.

The instances are not clustered.

OpenVMS Galaxy Concepts 2–7

Figure 2–4: Shared-Partial Computing Model

Network Interconnect

Storage Interconnect

VM-0007A-AI

CPUs
8 9 10 11

I/O

Instance C

CPUs

I/O

CPUs

I/O

0 1 2 3 4 5 6 7

Instance BInstance A

Private Memory Private Memory Private Memory Code and data

Data onlyShared Memory

2.7.3 Shared-Everything Computing Model

In a shared-everything configuration (shown in Figure 2–5), the instances share
memory and are clustered with one another.

Figure 2–5: Shared-Everything Computing Model

Network Interconnect

CPUs
8 9 10 11

I/O

Instance C

CPUs

I/O

CPUs

I/O

0 1 2 3 4 5 6 7

Instance BInstance A

Cluster Interconnect

Cluster Interconnect

Storage Interconnect

VM-0008A-AI

Shared Memory

Private Memory Private Memory Private Memory Code and data

Data only

2.8 What Is a Single-Instance Galaxy?
A single-instance Galaxy is for non-Galaxy platforms; that is, those without
a Galaxy console. Galaxy configuration data, which is normally provided by
console firmware, is instead created in a file. By setting the system parameter
GALAXY to 1, SYSBOOT reads the file into memory and the system boots as a
single-instance Galaxy, complete with shared memory, Galaxy system services, and
even self-migration of CPUs. This can be done on any Alpha platform.

Single-instance Galaxy configurations run on everything from laptops to
mainframes. This capability allows early adopters to evaluate OpenVMS Galaxy
features, and most importantly, to develop and test Galaxy-aware applications
without incurring the expense of setting up a full-scale Galaxy platform.

Because the single-instance Galaxy is not an emulator—it is real Galaxy
code—applications run on multiple-instance configurations.

2–8 OpenVMS Galaxy Concepts

For more information about running a single-instance Galaxy, see Chapter 10.

2.9 OpenVMS Galaxy Configuration Considerations

When you plan to create an OpenVMS Galaxy computing environment, you need to
make sure that you have the appropriate hardware for your configuration. General
OpenVMS Galaxy configuration rules include:

• One or more CPUs per instance.

• One or more I/O modules per instance.

• Dedicated serial console port per instance.

• Memory:

– Enough private memory for OpenVMS and applications

– Enough shared memory for the shared memory cluster interconnect, global
sections, and so on

• Display for configuration management with either an Alpha or VAX
workstation running DECwindows or a Windows NT workstation with an X
terminal emulator.

For more information about hardware-specific configuration requirements, see the
chapter in this book specific to your hardware.

2.9.1 XMI Bus Support

The XMI bus is supported only on the first instance (instance 0) of a Galaxy
configuration in an AlphaServer 8400 system.

Only one DWLM-AA XMI plug-in-unit subsystem cage for all XMI devices is
supported on an AlphaServer 8400 system. The DWLM-AA takes up quite a bit
of space in the system because an I/O bulkhead is required on the back of the
system to connect all XMI devices to the system. This allows only two additional
DWLPB PCI plug-in units in the system.

2.9.2 Memory Granularity Restrictions

Note the following memory granularity restrictions:

• Private memory must start on a 64 MB boundary.

• Shared memory must start on an 8 MB boundary.

• All instances except the last must have a multiple of 64 MB.

Incorrectly configured memory results in wasted memory.

2.9.3 EISA Bus Support

The EISA bus is supported only on the first instance (instance 0) of a Galaxy
configuration. Due to the design of all EISA options, they must always be on
instance 0 of the system. A KFE70 must be used in the first instance for any EISA
devices in the Galaxy system.

All EISA devices must be on instance 0. No EISA devices are supported on any
other instance in a Galaxy system.

A KFE72-DA installed in other instances provides console connection only and
cannot be used for other EISA devices.

OpenVMS Galaxy Concepts 2–9

2.10 CD Drive Recommendation

Compaq recommends that a CD drive be available for each instance in an
OpenVMS Galaxy computing environment. If you plan to use multiple system
disks in your OpenVMS Galaxy, a CD drive per instance is helpful for upgrades
and software installations.

If your OpenVMS Galaxy instances are clustered together and use a single common
system disk, a single CD drive may be sufficient because the CD drive can be served
to the other clustered instances. For operating system upgrades, the instance with
the attached CD drive can be used to perform the upgrade.

2.11 Important Cluster Information

This section contains information that is important to you if you are clustering
instances with other instances in an OpenVMS Galaxy computing environment or
with non-Galaxy OpenVMS clusters.

For information about OpenVMS Galaxy licensing requirements that apply to
clustering instances, see the OpenVMS License Management Utility Manual.

2.11.1 Becoming an OpenVMS Galaxy Instance

When you are installing OpenVMS Alpha Version 7.3, the OpenVMS installation
dialog asks questions about OpenVMS Cluster and OpenVMS Galaxy instances.

If you answered “Yes” to the question

Will this system be a member of an OpenVMS cluster? (Yes/No)

and you answered “Yes” to the question

Will this system be an instance in an OpenVMS Galaxy? (Yes/No)

the following information is displayed:

For compatibility with an OpenVMS Galaxy, any systems in the OpenVMS
cluster which are running versions of OpenVMS prior to V7.1-2 must
have a remedial kit installed. The appropriate kit from the following
list must be installed on all system disks used by these systems.
(Later versions of these remedial kits may be used if available.)

Alpha V7.1 and V7.1-1xx ALPSYSB02_071
Alpha V6.2 and V6.2-1xx ALPSYSB02_062

VAX V7.1 VAXSYSB01_071
VAX V6.2 VAXSYSB01_062

For more information, see the OpenVMS Alpha Installation and Upgrade Manual.

2.11.2 SCSI Cluster Considerations

This section summarizes information about SCSI device naming for OpenVMS
Galaxy computing environments. For more complete information about OpenVMS
Cluster device naming, see the OpenVMS Cluster Systems manual.

If you are creating an OpenVMS Galaxy with shared SCSI buses, you must note
the following:

For OpenVMS to give the SCSI devices the same name on each instance correctly,
you are need to use the device-naming feature of OpenVMS.

2–10 OpenVMS Galaxy Concepts

For example, assume that you have the following adapters on your system when
you enter the SHOW CONFIG command:

PKA0 (embedded SCSI for CDROM)
PKB0 (UltraSCSI controller KZPxxx)
PKC0 (UltraSCSI controller)

When you make this system a two-instance Galaxy, your hardware looks like the
following:

Instance 0
PKA0 (UltraSCSI controller)

Instance 1
PKA0 (embedded SCSI for CDROM)
PKB0 (UltraSCSI controller)

Your shared SCSI is connected from PKA0 on instance 0 to PKB0 on instance 1.

If you initialize the system with the LP_COUNT environment variable set to 0, you
will not be able to boot OpenVMS on the system unless the SYSGEN parameter
STARTUP_P1 is set to MINIMUM.

This is because, with the LP_COUNT variable set to 0, you now have PKB
connected to PKC, and the SCSI device-naming that was set up for initializing with
multiple partitions is not correct for initializing with the LP_COUNT variable
set to 0.

During the device configuration that occurs during boot, OpenVMS notices that
PKA0 and PKB0 are connected together. OpenVMS expects that each device has
the same allocation class and names, but in this case, they do not.

The device naming that was set up for the two-instance Galaxy does not function
correctly because the console naming of the controllers has changed.

2.12 Security Considerations in an OpenVMS Galaxy Computing
Environment

OpenVMS Galaxy instances executing in a shared-everything cluster environment,
in which all security database files are shared among all instances, automatically
provide a consistent view of all Galaxy-related security profiles.

If you choose not to share all security database files throughout all Galaxy
instances, a consistent security profile can only be achieved manually. Changes to
an object’s security profile must be followed by similar changes on all instances
where this object can be accessed.

Because of the need to propagate changes manually, it is unlikely that such
a configuration would ever be covered by a US C2 evaluation or by similar
evaluations from other authorities. Organizations that require operating systems
to have security evaluations should ensure that all instances in a single OpenVMS
Galaxy belong to the same cluster.

2.13 Configuring OpenVMS Galaxy Instances in Time Zones

OpenVMS Galaxy instances do not have to be in the same time zone unless they
are in the same cluster. For example, each instance in a three-instance Galaxy
configuration could be in a different time zone.

OpenVMS Galaxy Concepts 2–11

2.14 Developing OpenVMS Galaxy Programs

The following sections describe OpenVMS programming interfaces that are useful
in developing OpenVMS Galaxy application programs. Many of the concepts are
extensions of the traditional single-instance OpenVMS system.

To see the C function prototypes for the services described in these chapters, enter
the following command:

$ LIBRARY/EXTRACT=STARLET SYS$LIBRARY:SYS$STARLET_C.TLB/OUTPUT=FILENAME

Then search the output file for the service you want to see.

2.14.1 Locking Programming Interfaces

One of the major features of the Galaxy platform is the ability to share resources
across multiple instances of the operating system. As with any shared resource,
the need arises to synchronize access to that resource. The services described in
this chapter provide primitives upon which a cooperative scheme can be created to
synchronize access to shared resources within a Galaxy.

A Galaxy lock is a combination of a spinlock and a mutex. While attempting to
acquire an owned Galaxy lock, the thread spins for a short period. If the lock does
not become available during the spin, the thread puts itself into a wait state. This
is different from SMP spinlocks in which the system crashes if the spin times out,
behavior that is not acceptable in a Galaxy.

Given the nature of Galaxy locks, they reside somewhere in shared memory.
That shared memory can be allocated either by the user or by the Galaxy locking
services. If the user allocates the memory, the locking services track only the
location of the locks. If the locking services allocate the memory, it is managed on
behalf of the user.

Unlike other monitoring code which is only part of the MON version of execlets, the
Galaxy lock monitoring code is always loaded.

There are several routines provided to manipulate Galaxy locks. The routines do
not provide anything but the basics when it comes to locking. They are a little
richer than the spinlocks used to support SMP, but far less than what the lock
manager provides. Table 2–1 summarizes the OpenVMS Galaxy system services
for lock programming.

Table 2–1: Galaxy System Services for Lock Programming
System Service Description

$ACQUIRE_GALAXY_LOCK Acquires ownership of an OpenVMS Galaxy
lock.

$CREATE_GALAXY_LOCK Allocates an OpenVMS Galaxy lock
block from a lock table created with the
$CREATE_GALAXY_LOCK service.

$CREATE_GALAXY_LOCK_TABLE Allocates an OpenVMS Galaxy lock table.

$DELETE_GALAXY_LOCK Invalidates an OpenVMS Galaxy lock and
deletes it.

$DELETE_GALAXY_LOCK_TABLE Deletes an OpenVMS Galaxy lock table.

$GET_GALAXY_LOCK_INFO Returns "interesting" fields from the specified
lock.

2–12 OpenVMS Galaxy Concepts

Table 2–1: Galaxy System Services for Lock Programming (cont.)

System Service Description

$GET_GALAXY_LOCK_SIZE Returns the minimum and maximum size of
an OpenVMS Galaxy lock.

$RELEASE_GALAXY_LOCK Releases ownership of an OpenVMS Galaxy
lock.

2.14.2 System Events Programming Interfaces

Applications can register to be notified when certain system events occur; for
example, when an instance joins the Galaxy or if a CPU joins a configure set.
If events are registered, an application can decide how to respond when the
registered events occur.

Table 2–2 summarizes the OpenVMS system services available for events
programming.

Table 2–2: Galaxy System Services for Events Programming
System Service Description

$CLEAR_SYSTEM_EVENT Removes one or more notification requests previously
established by a call to $SET_SYSTEM_EVENT.

$SET_SYSTEM_EVENT Establishes a request for notification when an
OpenVMS system event occurs.

2.14.3 Using SDA in an OpenVMS Galaxy

This section describes SDA information that is specific to an OpenVMS Galaxy
computing environment.

For more information about using SDA, see the OpenVMS Alpha System Analysis
Tools Manual.

2.14.3.1 Dumping Shared Memory

When a system crash occurs in a Galaxy instance, the default behavior of OpenVMS
is to dump the contents of private memory of the failed instance and the contents of
shared memory. In a full dump, every page of both shared and private memory
is dumped; in a selective dump, only those pages in use at the time of the system
crash are dumped.

Dumping of shared memory can be disabled by setting bit 4 the dynamic SYSGEN
parameter DUMPSTYLE. This bit should only be set after consulting your Compaq
support representative, as the resulting system dump may not contain the data
required to determine the cause of the system crash.

Table 2–3 shows the definitions of all the bits in DUMPSTYLE and their meanings
in OpenVMS Alpha. Bits can be combined in any combination.

OpenVMS Galaxy Concepts 2–13

Table 2–3: Definitions of Bits in DUMPSTYLE
Bit Value Description

0 1 0 = Full dump. The entire contents of physical memory are written to the
dump file.

1 = Selective dump. The contents of memory are written to the dump file
selectively to maximize the usefulness of the dump file while conserving disk
space. (Only pages that are in use are written).

1 2 0 = Minimal console output. This consists of the bugcheck code; the identity
of the CPU, process, and image where the crash occurred; the system date
and time; plus a series of dots indicating progress writing the dump.

1 = Full console output. This includes the minimal output described above
plus stack and register contents, system layout, and additional progress
information such as the names of processes as they are dumped.

2 4 0 = Dump to system disk. The dump are written to SYS$SYS-
DEVICE:[SYSn.SYSEXE]SYSDUMP.DMP, or in its absence,
SYS$SYSDEVICE:[SYSn.SYSEXE]PAGEFILE.SYS.

1 = Dump to alternate disk. The dump are written to dump_dev:[SYSn.SY-
SEXE]SYSDUMP.DMP, where dump_dev is the value of the console
environment variable DUMP_DEV.

3 8 0 = Uncompressed dump. Pages are written directly to the dump file.

1 = Compressed dump. Each page is compressed before it is written,
providing a saving in space and in the time taken to write the dump, at the
expense of a slight increase in time taken to access the dump.

4 16 0 = Dump shared memory.

1 = Do not dump shared memory.

The default setting for DUMPSTYLE is 0 (an uncompressed full dump, including
shared memory, written to the system disk). Unless a value for DUMPSTYLE is
specified in MODPARAMS.DAT, AUTOGEN.COM sets DUMPSTYLE to 1 (an
uncompressed selective dump, including shared memory, written to the system
disk) if there is less than 128 MB of memory on the system, or to 9 (a compressed
selective dump, including shared memory, written to the system disk) otherwise.

2.14.3.2 Summary of SDA Command Interface Changes or Additions

The following list summarizes how the System Dump Analyzer (SDA) has been
enhanced to view shared memory and OpenVMS Galaxy data structures. For more
details, see the appropriate commands.

1. Added SHOW SHM_CPP. The default is a brief display of all SHM_CPPs.

2. Added VALIDATE SHM_CPP. The default action is to validate all SHM_CPPs
and the counts and ranges of attached PFNs, but not the contents of the
database for each PFN.

3. Added SHOW SHM_REG. The default is a brief display of all SHM_REGs.

4. Added /GLXSYS and /GLXGRP to SHOW GSD.

5. Added SHOW GMDB to display the contents of the GMDB and NODEB
blocks. The default is a detailed display of GMDB.

6. SHOW GALAXY shows a brief display of GMDB and all node blocks.

2–14 OpenVMS Galaxy Concepts

7. SHOW GLOCK displays Galaxy lock structures. The default is a display
of base GLOCK structures.

8. SHOW GCT displays Galaxy configuration tree. The default is /SUMMARY.

9. SHOW PAGE_TABLE and SHOW PROCESS/PAGE_TABLE.

OpenVMS Galaxy Concepts 2–15

3
NUMA Implications on OpenVMS

Applications

NUMA (nonuniform memory access) is an attribute of a system in which access
time to any given physical memory location is not the same for all CPUs. Given
this architecture, you must have consistently good location (but not necessarily 100
percent of the time) for high performance. In the AlphaServer GS series, CPUs
access memory in their own QBB faster than they access memory in another QBB.

If Open VMS is running on the resources of a single QBB, then there is no NUMA
effect and this discussion does not apply. Whenever possible and practical, you can
benefit by running in a single QBB, which eliminates the complexities NUMA
may present.

The most common question for overall system performance in a NUMA
environment is, “uniform for all?” or “optimal for a few?” In other words, do you
want all processes to have roughly equivalent performance, or do you want to focus
on some specific processes and make them as efficient as possible? Whenever
a single instance of OpenVMS runs on multiple QBBs (whether it is the entire
machine, a hard partition, or a Galaxy instance), then you must answer this
question, because the answer dictates a number of configuration and management
decisions you need to understand.

The OpenVMS default NUMA mode of operation is "uniform for all." Resources are
assigned so that over time each process on the system has, on average, roughly the
same performance potential.

If "uniform for all" is not what you want, you must understand the interfaces
available to you in order to achieve the more specialized "optimal for a few" or
"dedicated" environment. Processes and data can be assigned to specific resources
to give them the highest performance potential possible.

To further enhance your understanding of the NUMA environment, this chapter
discusses the following topics:

• Base operating system NUMA actions

• Application resource considerations

• APIs

3.1 OpenVMS NUMA Awareness

OpenVMS memory management and process scheduling have been enhanced to
work more efficiently on the AlphaServer GS series systems hardware.

The operating system treats the hardware as a set of resource affinity domains
(RADs). A RAD is the software grouping of physical resources (CPUs, memory, and
I/O) with common access characteristics. On the AlphaServer GS series systems,
a RAD corresponds to a quad building block (QBB). When a single instance of
OpenVMS runs on multiple QBBs, a QBB is seen as a RAD by OpenVMS.

Each of the following areas of enhancement adds a new capability to the system.
Individually each brings increased performance potential for certain application

NUMA Implications on OpenVMS Applications 3–1

needs. Collectively they provide the environment necessary for a diverse
application mix. The areas being addressed are:

• Assignment of process private pages

• Assignment of reserved memory pages

• Process scheduling

• Replication of read-only system space pages

• Allocation of nonpaged pool

• Tools for observing page assignment

A CPU references memory in the same RAD three times faster than it references
memory in another RAD. Therefore, it is important to keep the code being
executed and the memory being referenced in the same RAD as much as
possible. Consistently good location is the key to good performance. In assessing
performance, the following questions illustrate the types of issues a programmer
needs to consider:

• Where is the code you are executing?

• Where is the data you are accessing?

• Where is the I/O device you are using?

The OpenVMS scheduler and the memory management subsystem work together
to achieve the best possible location by:

• Assigning each process a preferred or "home" RAD.

• Usually scheduling a process on a CPU in its home RAD.

• Replicating operating system read-only code and some data in each RAD.

• Distributing global pages over RADs.

• Striping reserved memory over RADs.

3.1.1 Home RAD

The OpenVMS operating system assigns a home RAD to each process during
process creation. This has two major implications. First, with rare exception,
one of the CPUs in the process’s home RAD runs the process. Second, all process
private pages required by the process comes from memory in the home RAD. This
combination aids in maximizing local memory references.

When assigning home RADs, the default action of OpenVMS is to distribute the
processes over the RADs.

3.1.2 System Code Replication

During system startup, the operating system code is replicated in the memory of
each RAD so that each process in the system accesses local memory whenever it
requires system functions. This replication is of both the executive code and the
installed resident image code granularity hint regions.

3.1.3 Distributing Global Pages

The default action of OpenVMS is to distribute global pages (the pages of a global
section) over the RADs. This approach is also taken with the assignment of global
pages that have been declared as reserved memory during system startup.

3–2 NUMA Implications on OpenVMS Applications

3.2 Application Resource Considerations

Each application environment is different. An application’s structure may dictate
which options are best for achieving the desired goals. Some of the deciding factors
include:

• Number of processes

• Amount of memory needed

• Amount of sharing between processes

• Use of certain base operating system features

• Use of locks and their location

There are few absolute rules, but the following sections present some basic
concepts and examples that usually lead to the best outcome. Localizing (on-QBB)
memory access is always the goal, but it is not always achievable and that is where
tradeoffs are most likely to be made.

3.2.1 Processes and Shared Data

If you have hundreds, or perhaps thousands, of processes that access a single global
section, then you probably want the default behavior of the operating system. The
pages of the global section are equally distributed in the memory of all RADs, and
the processes’ home RAD assignments are equally distributed over the CPUs.
This is the distributed, or "uniform," effect where over time all processes have
similar performance potential given random accesses to the global section. None
are optimal but none are at a severe disadvantage compared to the others.

On the other hand, a small number of processes accessing a global section can be
"located" in a single RAD as long as four CPUs can handle the processing load
and a single RAD contains sufficient memory for the entire global section. This
localizes most memory access, enhancing the performance of those specifically
located processes. This strategy can be employed multiple times on the same
system by locating one set of processes and their data in one RAD and a second set
of processes and their data in another RAD.

3.2.2 Memory

A single QBB can have up to 32 GB of memory; two can have up to 64 GB, and so
on. Take advantage of the large memory capacity whenever possible. For example,
consider duplicating code or data in multiple RADs. It takes analysis, may seem
wasteful of space, and requires coordination. However, it may be worthwhile if it
ultimately makes significantly more memory references local.

Consider using a RAM disk product. Even if NUMA is involved, in-memory
references outperform real device I/O.

3.2.3 Sharing and Synchronization

Sharing data usually requires synchronization. If the coordination mechanism is a
single memory location (sometimes called a latch, a lock, or a semaphore), then it
may be the cause of many remote accesses and therefore degrade performance if
the contention is high enough. Multiple levels of such locks distributed throughout
the data may reduce the amount of remote access.

NUMA Implications on OpenVMS Applications 3–3

3.2.4 Use of OpenVMS Features

Heavy use of certain base operating system features will result in much remote
access because the data to support these functions resides in the memory of QBB0.
Some data cannot be duplicated and some can be but has not been yet.

3.3 Batch Job Support for NUMA Resource Affinity Domains

This section describes updates to the OpenVMS batch processing subsystem in
support of resource affinity domains (RADs) in a NUMA environment.

System managers can assign batch queues to specific support of resource affinity
domains (RADs) in a NUMA environment, and users can specify a RAD on which
to run a batch job.

These new features are restricted for use on batch execution queues and batch jobs.

See the OpenVMS DCL Dictionary for DCL command information.

3.3.1 Batch Queue Level RAD Support

A new qualifier, /RAD, is available to the following DCL commands:
INITIALIZE/QUEUE, SET/QUEUE, and START/QUEUE. The system manager
specifies the RAD number on which to run batch jobs assigned to the queue.

The RAD value is validated as a positive integer between 0 and
SYI$_RAD_MAX_RADS. The SHOW/QUEUE/FULL command now displays the
RAD in its output, and the F$GETQUI lexical function now accepts a new RAD
item.

3.3.1.1 Examples

This section describes a sequence of the commands and their effects on a batch
queue. A SHOW command is included in each example to illustrate the batch
queue modifications.

• The following INITIALIZE/QUEUE command creates or reinitializes the batch
queue BATCHQ1 to run on node QUEBIT. All jobs assigned to this queue will
run on RAD 0.

$ INITIALIZE/QUEUE/ON=QUEBIT::/BATCH/RAD=0 BATCHQ1

$ SHOW QUEUE/FULL BATCHQ1
Batch queue BATCHQ1, stopped, QUEBIT::
/BASE_PRIORITY=4 /JOB_LIMIT=1 /OWNER=[SYSTEM]
/PROTECTION=(S:M,O:D,G:R,W:S) /RAD=0

• The following START/QUEUE command modifies BATCHQ1 to run all assigned
jobs on RAD 1 of QUEBIT, and readies the queue to accept jobs for processing:

$ START/QUEUE/RAD=1 BATCHQ1

$ SHOW QUEUE/FULL BATCHQ1
Batch queue BATCHQ1, idle, on QUEBIT::

/BASE_PRIORITY=4 /JOB_LIMIT=3 /OWNER=[SYSTEM]
/PROTECTION=(S:M,O:D,G:R,W:S) /RAD=1

• The following SET/QUEUE command modifies the batch queue to run all
assigned jobs on RAD 0 of QUEBIT. Any new jobs assigned to the queue will
run on RAD 0. Jobs already executing on the queue will continue to completion
executing on the previous RAD value.

3–4 NUMA Implications on OpenVMS Applications

$ SET/QUEUE/RAD=0 BATCHQ1

$ SHOW QUEUE/FULL BATCHQ1
Batch queue BATCHQ1, idle, on QUEBIT::

/BASE_PRIORITY=4 /JOB_LIMIT=3 /OWNER=[SYSTEM]
/PROTECTION=(S:M,O:D,G:R,W:S) /RAD=0

• To erase the RAD value for a batch queue, use the SET/QUEUE/NORAD
command:

$ SET/QUEUE/NORAD BATCHQ1

$ SHOW QUEUE/FULL BATCHQ1
Batch queue BATCHQ1, idle, on QUEBIT::

/BASE_PRIORITY=4 /JOB_LIMIT=3 /OWNER=[SYSTEM]
/PROTECTION=(S:M,O:D,G:R,W:S)

• Use the F$GETQUI lexical function to return the value of the RAD. A value of
-1 indicates no RAD value is attributed to the queue:

$ WRITE SYS$OUTPUT F$GETQUI("DISPLAY_QUEUE","RAD","BATCHQ1")
-1

3.3.2 Job Level RAD Support

The new qualifier, /RAD, is added to the following DCL commands: SUBMIT and
SET/ENTRY.

The user specifies the RAD number on which the submitted batch job is to execute
in the qualifier value. The SHOW ENTRY and SHOW QUEUE/FULL commands
are enhanced to list the RAD setting on batch jobs.

3.3.2.1 Examples

When a job is submitted to a batch queue that does not have a RAD setting, the job
will execute using the RAD specified on the SUBMIT command.

The following command submits TEST.COM to the queue ANYRADQ. There is no
RAD setting on the ANYRADQ queue.

$ SUBMIT/HOLD/QUEUE=ANYRADQ /RAD=1 TEST.COM
Job TEST (queue ANYRADQ, entry 23) holding

$ SHOW ENTRY/FULL 23
Entry Jobname Username Blocks Status
----- ------- -------- ------ ------

23 TEST SYSTEM Holding
On idle batch queue ANYRADQ
Submitted 24-JUL-2001 14:19:37.44 /KEEP /NOPRINT /PRIORITY=100
/RAD=0
File: _1DKB200:[SWEENEY.CLIUTL]TEST.COM;1

When a job is submitted to a batch queue that does have a RAD setting, the job
will execute using the RAD specified on the queue, regardless of the RAD specified
on the SUBMIT command. This behavior is consistent with other batch system
features.

The queue, BATCHQ1, is defined with /RAD=0. The following SUBMIT command
example creates a job that runs on RAD 0, even though the user specified RAD 1
on the submission:

$ SUBMIT/HOLD/QUEUE=BATCHQ1 /RAD=1 TEST.COM
Job TEST (queue BATCHQ1, entry 24) holding

NUMA Implications on OpenVMS Applications 3–5

$ SHOW ENTRY 24/FULL
Entry Jobname Username Blocks Status
----- ------- -------- ------ ------

24 TEST SYSTEM Holding
On idle batch queue BATCHQ1
Submitted 24-JUL-2001 14:23:10.37 /KEEP /NOPRINT /PRIORITY=100
/RAD=0
File: _1DKB200:[SWEENEY.CLIUTL]TEST.COM;2

3.3.3 Run-Time Behavior

When you specify a RAD on a batch job, the job controller creates the process with
the new HOME_RAD argument set to the RAD value on the job.

If the RAD specified on the job is invalid on the target system, the job controller
will output a BADRAD message to the operator console. If the bad RAD value
matches the RAD setting on the batch queue, the batch queue is stopped. The job
remains in the queue.

3.3.3.1 Error Processing

The following example shows an error in run-time processing:

SYSTEM@QUEBIT> SUBMIT/NONOTIFY/NOLOG/QUEUE=BATCHQ1 TEST.COM
Job TEST (queue BATCHQ1, entry 30) started on BATCHQ1

OPCOM MESSAGES

SYSTEM@QUEBIT> START/QUEUE BATCHQ1
%%%%%%%%%%% OPCOM 25-JUL-2001 16:15:48.52 %%%%%%%%%%%
Message from user SYSTEM on QUEBIT
%JBC-E-FAILCREPRC, job controller could not create a process

%%%%%%%%%%% OPCOM 25-JUL-2001 16:15:48.53 %%%%%%%%%%%
Message from user SYSTEM on QUEBIT
-SYSTEM-E-BADRAD, bad RAD specified

%%%%%%%%%%% OPCOM 25-JUL-2001 16:15:48.54 %%%%%%%%%%%
Message from user SYSTEM on QUEBIT
%QMAN-E-CREPRCSTOP, failed to create a batch process, queue BATCHQ1 will be stopped

$SYSTEM@QUEBIT> WRITE SYS$OUTPUT -
_$ F$message(%x’F$GETQUI("DISPLAY_ENTRY","CONDITION_VECTOR","30")’)
%SYSTEM-E-BADRAD, bad RAD specified

3.3.3.2 RAD Modifications On Batch Queues

When you change the RAD value on a batch queue, the jobs currently in the batch
queue are not dynamically updated with the new RAD value specified on the queue.

Any executing jobs will complete processing using the original RAD value. Jobs in
the pending, holding, or timed execution states will retain the old RAD value on
the job; however, when such a job becomes executable, the job is updated with the
new RAD value and runs on the RAD specified on the queue.

3.4 RAD Application Programming Interfaces

A number of interfaces specific to RADs are available to application programmers
and system managers to control the location of processes and memory, if the
system defaults do not meet the needs of the operating environment. The following
list provides brief descriptions; the details can be found in the OpenVMS System
Services Reference Manual.

3–6 NUMA Implications on OpenVMS Applications

Creating a Process

If you want a process to have a specific home RAD, then use the new HOME_RAD
argument in the SYS$CREPRC system service. This allows the application to
control the location.

Moving a Process

If a process has already been created and you want to relocate it, use the
CAP$M_PURGE_WS_IF_NEW_RAD flag to the SYS$PROCESS_AFFINITY or
SYS$PROCESS_CAPABILITY system service. The process’s working set will be
purged if the choice of affinity or capability results in a change to the home RAD
of the process.

Getting Information About a Process

The SYS$GETJPI system service returns the home RAD of a process.

Creating a Global Section

The SYS$CRMPSC_GDZRO_64 and SYS$CREATE_GDZRO system services
accept a RAD argument mask. This indicates in which RADs OpenVMS should
attempt to assign the pages of the global section.

Assigning Reserved Memory

The SYSMAN interface for assigning reserved memory has a RAD qualifier, so a
system manager can declare that the memory being reserved should come from
specific RADs.

Getting Information About the System

The SYS$GETSYI system service defines the following item codes for obtaining
RAD information:

• RAD_MAX_RADS shows the maximum number of RADs possible on a platform.

• RAD_CPUS shows a longword array of RAD/CPU pairs.

• RAD_MEMSIZE shows a longword array of RAD/page_count pairs.

• RAD_SHMEMSIZE shows a longword array of RAD/page_count pairs.

RAD_SUPPORT System Parameter

The RAD_SUPPORT system parameter has numerous bits and fields defined for
customizing individual RAD-related actions. For more information about those
bits, see the example in Section 3.7.1

3.5 RAD System Services Summary Table
The following table describes RAD system service information for OpenVMS
Version 7.3.

For more information, see the OpenVMS System Services Reference Manual.

System Service RAD Information

$CREATE_GDZRO Argument: rad_mask
Flag: SEC$M_RAD_HINT
Error status: SS$_BADRAD

$CREPRC Argument: home_rad
Status flag bit: stsflg
Symbolic name: PRC$M_HOME_RAD
Error status: SS$_BADRAD

NUMA Implications on OpenVMS Applications 3–7

System Service RAD Information

$CRMPSC_GDZRO_64 Argument: rad_mask
Flag: SEC$M_RAD_MASK
Error status: SS$_BADRAD

$GETJPI Item code: JPI$_HOME_RAD

$GETSYI Item codes: RAD_MAX_RADS, RAD_CPUS,
RAD_MEMSIZE, RAD_SHMEMSIZE,
GALAXY_SHMEMSIZE

$SET_PROCESS_PROPERTIESW Item code: PPROP$C_HOME_RAD

3.6 RAD DCL Command Summary Table
The following table summarizes OpenVMS RAD DCL commands. For more
information, see the OpenVMS DCL Dictionary.

DCL Com-
mand/Lexical RAD Information

SET PROCESS Qualifier: /RAD=HOME=n

SHOW PROCESS Qualifier: /RAD

F$GETJPI Item code: HOME_RAD

F$GETSYI Item codes: RAD_MAX_RADS, RAD_CPUS, RAD_MEMSIZE,
RAD_SHMEMSIZE

3.7 System Dump Analyzer (SDA) Support for RADs
The following System Dump Analyzer (SDA) commands have been enhanced to
include RAD support:

• SHOW RAD

• SHOW RMD (reserved memory descriptor)

• SHOW PFN

3.7.1 SHOW RAD

The SDA command SHOW RAD displays:

• Settings and explanations of the RAD_SUPPORT system parameter fields

• Assignment of CPUs and memory to the RADs

This command is useful only on hardware platforms that support RADs (for
example, AlphaServer GS160 systems). By default, the SHOW RAD command
displays the settings of the RAD_SUPPORT system parameter fields.

Format:

SHOW RAD [number|/ALL]

Parameter:

number

Displays information on CPUs and memory for the specified RAD.

Qualifier:

/ALL

3–8 NUMA Implications on OpenVMS Applications

Displays settings of the RAD_SUPPORT parameter fields and all CPU/memory
assignments.

The following example shows the settings of the RAD_SUPPORT system parameter
fields:

SDA> SHOW RAD

Resource Affinity Domains

RAD information header address: FFFFFFFF.82C2F940
Maximum RAD count: 00000008
RAD containing SYS$BASE_IMAGE: 00000000
RAD support flags: 0000000F

3 2 2 1 1
1 4 3 6 5 8 7 0
+-----------+-----------+-----------+-----------+
|..|..| skip|ss|gg|ww|pp|..|..|..|..|..|fs|cr|ae|
+-----------+-----------+-----------+-----------+
|..|..| 0| 0| 0| 0| 0|..|..|..|..|..|00|11|11|
+-----------+-----------+-----------+-----------+

Bit 0 = 1: RAD support is enabled

Bit 1 = 1: Soft RAD affinity support is enabled
(Default scheduler skip count of 16 attempts)

Bit 2 = 1: System-space replication support is enabled

Bit 3 = 1: Copy on soft fault is enabled

Bit 4 = 0: Default RAD-based page allocation in use

Allocation Type RAD choice
--------------- ----------
Process-private pagefault Home
Process creation or inswap Random
Global pagefault Random
System-space page allocation Current

Bit 5 = 0: RAD debug feature is disabled)

This example shows information about the CPUs and memory for RAD 2:

SDA> SHOW RAD 2

Resource Affinity Domain 0002

CPU sets:

Active 08 09 10 11
Configure 08 09 10 11
Potential 08 09 10 11

PFN ranges:

Start PFN End PFN PFN count Flags
--------- -------- --------- -----
01000000 0101FFFF 00020000 000A OpenVMS Base

NUMA Implications on OpenVMS Applications 3–9

01020000 0103FFFF 00020000 0010 Galaxy_Shared

SYSPTBR: 01003C00)

3.7.2 SHOW RMD (Reserved Memory Descriptor)

The SDA command SHOW RMD has been enhanced to indicate the RAD from
which reserved memory has been allocated. If a RAD was not specified when the
reserved memory was allocated, then SDA displays ANY.

3.7.3 SHOW PFN

The SDA command SHOW PFN has been enhanced to include the /RAD qualifier.
It is similar to the existing /COLOR qualifier.

3.7.4 RAD Support for Hard Affinity

The SET PROCESS command has been enhanced to include the /AFFINITY
qualifier. The /AFFINITY qualifier allows bits in the kernel thread affinity mask to
be set or cleared. The bits in the affinity mask can be set or cleared individually, in
groups, or all at once.

The /NOAFFINITY qualifier clears all affinity bits currently set in the current or
permanent affinity masks, based on the setting of the /PERMANENT qualifier.
Specifying the /AFFINITY qualifier has no direct effect, but merely indicates the
target of the operations specified by the following secondary parameters:

/SET=(n[,..

Sets the affinity for currently active CPUs defined by the CPU IDs n, where n
has the range of 0 to 31.

/CLEAR=(n[,

Clears the affinity for currently active CPUs defined by the position values
n, where n has the range of 0 to 31.

/PERMANENT

Performs the operation on the permanent affinity mask as well as the current
affinity mask, making the changes valid for the life of the kernel thread. (The
default behavior is to affect only the affinity mask for the running image.)

This example shows how to set the affinity bits to active for CPUs a, b, c, and d:

$ SET PROCESS /AFFINITY /PERMANENT /SET = a,b,c,d,...

On a system that supports RADs, the set of CPUs to which you affinitize a process
should be in the same RAD. For example, on an AlphaServer GS160 with CPUs
0,1,2,3 in RAD 0 and with CPUs 4,5,6,7 in RAD 1, SET = 2,3,4,5 would not be a
good choice because half of the time you could be executing off your home RAD.

3–10 NUMA Implications on OpenVMS Applications

4
Creating an OpenVMS Galaxy on AlphaServer

GS140/GS60/GS60E Systems

OpenVMS Alpha Version 7.3 provides support for OpenVMS Galaxy configurations
on AlphaServer GS60, GS60E, and GS140 systems. You can run three instances
of OpenVMS on AlphaServer GS140 systems or two instances on AlphaServer
GS60/GS60E systems.

To create OpenVMS Galaxy environments on AlphaServer GS60, GS60E, and
GS140 systems, you must download the latest version of the V6.2 console firmware
from the following location:

http://ftp.digital.com/pub/DEC/Alpha/firmware/

When you have the firmware, you can:

• Create an OpenVMS Galaxy computing environment on an AlphaServer GS140
by following the procedures in Chapter 5.

• Create an OpenVMS Galaxy computing environment on AlphaServer GS60 or
GS60E systems by following the procedures in Chapter 6.

Creating an OpenVMS Galaxy on AlphaServer GS140/GS60/GS60E Systems 4–1

5
Creating an OpenVMS Galaxy on an

AlphaServer 8400 System

This chapter describes the process to create an OpenVMS Galaxy computing
environment on an AlphaServer 8400.

5.1 Step 1: Choose a Configuration and Determine Hardware
Requirements

Quick Summary of an AlphaServer 8400 Galaxy Configuration

9 slots for:

I/O modules (of type KFTIA or KFTHA)

Memory modules

Processor modules (2 CPUs per module)

Console line for each partition:

Standard UART for first partition

KFE72-DA for each additional partition

Rules:

Must have an I/O module per partition.

Maximum of 3 I/O modules.

Must have at least one CPU module per partition.

Example Configuration 1

2 partitions, 8 CPUs, 12 GB memory

9 slots allocated as follows:

– 2 I/O modules

– 4 Processor modules (2 CPUs each)

– 3 Memory modules (4 GB each)

Example Configuration 2

3 partitions, 8 CPUs, 8 GB memory

9 slots allocated as follows:

– 3 I/O modules

– 4 Processor modules (2 CPUs each)

– 2 Memory modules (4 GB each)

5.2 Step 2: Set Up Hardware

When you have acquired the necessary hardware for your configuration, follow the
procedures in this section to assemble it.

Creating an OpenVMS Galaxy on an AlphaServer 8400 System 5–1

5.2.1 Overview of KFE72-DA Console Subsystem Hardware

The AlphaServer 8400 provides a standard built-in UART, which is used as the
console line for the primary Galaxy instance. The console for each additional
instance requires a KFE72-DA console subsystem, which is the set of EISA-bus
modules that establishes an additional console port.

Note that the AlphaServer 8400 supports a maximum of three I/O modules.
Attempting to configure more than three is unsupported.

Each separate KFE72-DA subsystem must be installed in a separate DWLPB card
cage with a hose connecting it to a separate I/O module of type KFTIA or KFTHA.

All KFTIA I/O modules must be installed first, starting at slot 8. Any KFTHA I/O
modules must follow the KFTIA modules, using the consecutively lower-numbered
slots.

You can use any combination of these two I/O modules as long as you follow this
slot assignment rule.

When configuring a console subsystem, the I/O hose connecting the I/O module
and DWLPB card cage must be plugged into the lowest hose port. Not just the
lowest available hose port, but the absolute first hose port; the one closest to the
top of the module.

The KFE72-DA contains three EISA modules that provide:

• Two COM ports

• An Ethernet port

• A small speaker and other ports (such as a keyboard and a mouse, which are
not used for Galaxy configurations)

5.2.2 Installing the KFE72-DA Modules

For each instance of the OpenVMS operating system after instance zero, you must
install the following three modules in the PCI card cage:

• Standard I/O module

• Serial port module

• Connector module

To install these modules, follow the procedures in Section 5.2.2.1 to Section 5.2.2.3,
which supplement the installation procedures for KFE72-DA modules in Chapter 5
of the KFE72 Installation Guide.

5.2.2.1 Slide the PCI Card Cage Out

Follow the procedures in Section 5.2.1 of the KFE72 Installation Guide.

5.2.2.2 Insert Modules and Connect Ribbon Cables

_________________________ Note _________________________

When installing PCI modules, be sure the option bulkheads mate with
the EMI gasket on the PCI card cage.

KFE72-DA modules must occupy slots 0, 1, and 2 of the DWLPB card cage.

5–2 Creating an OpenVMS Galaxy on an AlphaServer 8400 System

To insert the modules in the PCI card cages and connect the appropriate ribbon
cables, see Figure 5–1 and perform the following steps:

Figure 5–1: Attaching Ribbon Cables

2

1
Slot Positions

Connector Module
(Beeper97)

54-25133-01

17-04116-01

17-04115-01

Serial Data Port Module
54-25082-01

Standard I/O Module
B2110-AA

VM-0301A-AI

J1

J2

0

1. Insert the standard I/O module (B2110-AA) in slot 0. Secure the module to
the card cage with a screw.

2. Attach the 60-pin ribbon cables (17-04116-01) on the serial port module
(54-25082-01) at connectors J1 and J2.

3. Insert the serial port module (54-25082-01) in slot 1. Secure the module to
the card cage with a screw.

4. Attach the 60-pin ribbon cable (17-04116-01) from the serial port module at
connector J1 to the standard I/O module.

5. Insert the connector module in slot 2.

6. Attach the 34-pin ribbon cable (17-04115-01) between the standard I/O module
(B2110-AA) in slot 0 and the connector module (54-25133-01) in slot 2.

7. Attach the 60-pin ribbon cable (17-04116-01) from the serial port module at
connector J2 to the connector module.

5.2.2.3 Attaching the Connectors

To connect the console terminal and additional devices, see Figure 5–2 and connect
the console serial line (H8571-J connector) to COM1.

Note that the pair of arrows between the numbers 1 and 2 on the serial port module
is an industry standard symbol for a serial port and does not indicate port numbers.

Creating an OpenVMS Galaxy on an AlphaServer 8400 System 5–3

Figure 5–2: Connectors

VM-0302A-AI

2

1

J1

J2

0

Floppy drive (not used)

Mouse (not used)

Keyboard (not used)

Floppy power (not used)

COM1
10 BaseT (not used)

COM2 (not used)

H8571-J
connector

5.2.3 Slide Shelf Back Into System

To return the card cage, follow steps 2 through 9 in the procedure in Section 5.2.3
of the KFE72 Installation Guide.

5.2.4 Using a Terminal Server

You may want to bring your console lines together using a terminal server. For
example, use a DECserver200 to allow reverse-LAT access to each console over the
network. While this is not strictly required, it greatly simplifies OpenVMS Galaxy
configuration management. See the appropriate product documentation for details
about configuring a LAT Server or other terminal concentrator.

5.2.5 Installing EISA Devices

Plug-in EISA devices can only be configured in partition 0. After installing
EISA devices, the console issues a message requesting that you run the EISA
Configuration Utility (ECU).

Run the ECU as follows:

1. Shut down all OpenVMS Galaxy instances.

2. Be sure your floppy disk drive is properly connected to the primary partitions
hardware. Typically the drive can be cabled into the Connector Module
("Beeper" part number 54-25133-01) in PCI slot 2.

3. Insert the diskette containing the ECU image.

4. Enter the following commands from the primary console:

P00>>> SET ARC_ENABLE ON
P00>>> INITIALIZE
P00>>> RUN ECU

5. Follow the procedures outlined by the ECU and exit when done.

6. Enter the following commands from the primary console:

5–4 Creating an OpenVMS Galaxy on an AlphaServer 8400 System

P00>>> boot
$ @SYS$SYSTEM:SHUTDOWN
P00>>> SET ARC_ENABLE OFF
P00>>> INITIALIZE
P00>>> LPINIT

7. Reboot the OpenVMS Galaxy.

There are two versions of the ECU, one that runs on a graphics terminal and
another that runs on character-cell terminals. Both versions are on the diskette,
and the console determines which one to run. For OpenVMS Galaxy systems, the
primary console is always a serial device with a character-cell terminal.

If the ECU is not run, OpenVMS displays the following message:

%SYSTEM-I-NOCONFIGDATA, IRQ Configuration data for EISA
slot xxx was not found, please run the ECU and reboot.

If you ignore this message, the system boots, but the plug-in EISA devices are
ignored.

Once you have configured and set up the OpenVMS Galaxy hardware as described
in the previous sections, perform the following steps to install and boot OpenVMS
Galaxy instances.

5.3 Step 3: Create a System Disk

Decide whether to use a system disk per instance or whether to use a cluster
common disk.

A new SECURITY.EXE is required for all cluster members running a version
prior to OpenVMS Version 7.1-2 that share the same VMS$OBJECTS.DAT file
with Galaxy instances.

5.4 Step 4: Install OpenVMS Alpha Version 7.3

No special installation procedures are required to run OpenVMS Galaxy software.
Galaxy functionality is included in the base operating system and can be enabled
or disabled using the console command and system parameter values described
later in this chapter.

For more information about installing the OpenVMS Alpha operating system, see
the OpenVMS Alpha Version 7.3 Upgrade and Installation Manual.

5.4.1 OpenVMS Galaxy Licensing Information

See the OpenVMS License Management Utility Manual.

5.5 Step 5: Upgrade the Firmware

Creating an OpenVMS Galaxy environment on an AlphaServer 8400 requires a
firmware upgrade to each processor module. If you use these modules again in a
non-Galaxy configuration, you need to reinstall the previous firmware. It is a good
practice to have a current firmware CD on hand.

It saves some time if you install all processor modules you intend to use and
update them at the same time. The AlphaServer 8400 requires that you use the
same firmware on all processor boards. If you need to upgrade a board at a later
time, you must:

1. Remove all the boards that are not at the same firmware revision level.

Creating an OpenVMS Galaxy on an AlphaServer 8400 System 5–5

2. Update the older boards.

3. Reinstall the remaining boards.

To upgrade your firmware, the system must be powered on, running in non-Galaxy
mode (that is, the LP_COUNT console environment variable—if you have
established it—must be set to zero).

To set the console environment variable, enter the following commands:

P00>>> SET LP_COUNT 0
P00>>> INIT

To upgrade the firmware, use the standard console firmware update available from
AlphaSystem Engineering. To download the current firmware version, check the
Alpha Systems Firmware web site at the following location:

http://ftp.digital.com/pub/DEC/Alpha/firmware/.

5.6 Step 6: Set the Environment Variables
When you have upgraded the firmware on all of your processor modules, you
can create the Galaxy-specific environment variables as shown in the following
example. This example assumes you are configuring a 2-instance, 8-CPU, 1-GB
OpenVMS Galaxy computing environment.

P00>>> create -nv lp_count 2
P00>>> create -nv lp_cpu_mask0 1
P00>>> create -nv lp_cpu_mask1 fe
P00>>> create -nv lp_io_mask0 100
P00>>> create -nv lp_io_mask1 80
P00>>> create -nv lp_mem_size0 10000000
P00>>> create -nv lp_mem_size1 10000000
P00>>> create -nv lp_shared_mem_size 20000000
P00>>> init

After you create these variables, you can use console SET commands to manipulate
them. These variables need only be created on processor 0.

The following descriptions give detailed information about each environment
variable.

LP_COUNT number

If set to zero, the system boots a traditional SMP configuration only. The Galaxy
console mode is OFF.

If set to a nonzero value, the Galaxy features are used, and the Galaxy variables
are interpreted. The exact value of LP_COUNT represents the number of Galaxy
partitions the console should expect. This number must be 0, 2, or 3.

Note that if you assign resources for three partitions and set this variable to two,
the remaining resources are left unassigned. Unassigned CPUs are assigned
to partition 0. You may also create the variables for the maximum number of
partitions ahead of time and simply not assign resources to them (set them to
nonzero values) until needed.

LP_CPU_MASKn mark

This bit mask determines which CPUs are to be initially assigned to the specified
Galaxy partition number. The AlphaServer 8400 console chooses the first
even-numbered CPU in a partition as its primary CPU, beginning with CPU 0 for
the initial instance. Keep this in mind when assigning the resources. (In other
words, do not assign only an odd-numbered CPU to a partition.)

5–6 Creating an OpenVMS Galaxy on an AlphaServer 8400 System

LP_IO_MASKn mask

These variables assign I/O modules by slot number to each instance:

• 100 represents the I/O module in slot 8.

• 80 represents the I/O module in slot 7.

• 40 represents the I/O module in slot 6.

These are the only valid assignments for the AlphaServer 8400.

You can assign more than one I/O module to an instance using these masks, but
each Galaxy instance requires at least one I/O module.

LP_MEM_SIZEn size

These variables allocate a specific amount of private memory for the specified
instance. It is imperative that you create these variables using proper values
for the amount of memory in your system, and the desired assignments for each
instance. See Table B–1 for the common values.

See also the shared memory variable text that follows.

LP_SHARED_MEM_SIZE size

This variable allocates memory for use as shared memory. See Table B–1 for the
common values.

_________________________ Tips _________________________

Shared memory must be assigned in multiples of 8 MB and all values
are expressed in hexadecimal bytes.

You can define only the amount of shared memory to use, and leave the
other LP_MEM_SIZE variables undefined. This causes the console to
allocate the shared memory from the high address space, and to split
the remaining memory equally among the number of partitions specified
by the LP_COUNT variable. If you also explicitly assign memory to a
specific partition using a LP_MEM_SIZE variable, but you leave other
partition memory assignments undefined, the console again assigns the
memory fragments for shared memory and any partitions with explicit
assignments, and then splits and assigns the remaining memory to any
remaining partitions not having explicit memory assignments.

BOOTDEF_DEV and BOOT_OSFLAGS variables

Set these variables on each of your Galaxy consoles before booting to ensure that
AUTOGEN reboots correctly when it needs to reboot the system after an initial
installation and after a system failure or operator-requested reboot.

Galaxy Environment Variables Example

P00>>> SHOW LP*

lp_count 2
lp_shared_mem_size 20000000 (512 MB)
lp_mem_size0 10000000 (256 MB)
lp_mem_size1 10000000 (256 MB)
lp_cpu_mask0 1 (CPU 0)
lp_cpu_mask1 fe (CPUs 1-7)
lp_io_mask0 100 (I/O module in slot 8)
lp_io_mask1 80 (I/O module in slot 7)

Creating an OpenVMS Galaxy on an AlphaServer 8400 System 5–7

P00>>

5.7 Step 7: Start the Secondary Console Devices
If the KFE72-DA was configured for Windows NT, it expects to find the video board
and hangs if one is not present. This is a common occurrence when configuring
an OpenVMS Galaxy. Use this console command to set the mode of operation
as follows:

P00>>> SET CONSOLE SERIAL

When you enter this command to the primary console before initializing the
secondary consoles, the setting is propagated to the secondary console hardware.

If you decide to use the Ethernet port, you may need to inform the console of which
media type and connection you intend to use: AUI, UDP, or twisted pair. The
console and operating system determine which to use, but you can assign a specific
media type by entering the following commands:

P00>>> SHOW NETWORK

P00>>> SET EWA0_MODE TWISTED

The first command displays a list of available network devices. The second
command establishes the default media type for the specified device (EWA0 in
this example). This should be done for all Ethernet devices before initializing
the secondary consoles.

Once you have set your console mode and network media types (if used), reinitialize
the system to ensure that the current settings are saved. If you have already
defined your Galaxy partitions, you can initialize now. If you have not defined your
Galaxy partitions, defer initialization until later.

If you are ready to initialize the system, enter:

P00>>> INIT

You should see the primary console respond with its usual power-up self-test
(POST) report. This could take up to 2 minutes. If you have properly defined
the Galaxy partitions, only the I/O devices associated with the primary partition
are visible.

To verify that partitioning has occurred, enter:

P00>>> SHOW DEVICE

or

P00>>> SHOW NETWORK

To initialize the secondary console, enter:

P00>>> LPINIT

The console displays the following:

Partition 0: Primary CPU = 0
Partition 1: Primary CPU = 2
Partition 0: Memory Base = 000000000 Size = 010000000
Partition 1: Memory Base = 010000000 Size = 010000000
Shared Memory Base = 020000000 Size = 010000000
LP Configuration Tree = 12c000
starting cpu 1 in Partition 1 at address 01000c001
starting cpu 2 in Partition 1 at address 01000c001

5–8 Creating an OpenVMS Galaxy on an AlphaServer 8400 System

starting cpu 3 in Partition 1 at address 01000c001
starting cpu 4 in Partition 1 at address 01000c001
starting cpu 5 in Partition 1 at address 01000c001
starting cpu 6 in Partition 1 at address 01000c001
starting cpu 7 in Partition 1 at address 01000c001

P00>>>

This command must be entered from the primary Galaxy console. If the Galaxy
partitions have been properly defined, and hardware resources have been properly
configured, you should see the primary console start the processors assigned to
each secondary partition. Each of the secondary consoles should initialize within 2
minutes.

If one or more consoles fails to initialize, double-check your hardware installation,
Galaxy partition definitions, and hardware assignments.

For more information about OpenVMS console restrictions and hints, see
Chapter 11.

5.8 Step 8: Boot the OpenVMS Galaxy

When you have correctly installed the Galaxy firmware and configured the
consoles, you can boot the initial Galaxy environment as follows:

For each Galaxy instance:

P00>>> B -FL 0,1 DKA100 // or whatever your boot device is.

SYSBOOT> SET GALAXY 1

SYSBOOT> CONTINUE

Congratulations! You have created an OpenVMS Galaxy.

Creating an OpenVMS Galaxy on an AlphaServer 8400 System 5–9

6
Creating an OpenVMS Galaxy on an

AlphaServer 8200 System

This chapter describes the process to create an OpenVMS Galaxy computing
environment on an AlphaServer 8200. It focuses on procedures that differ from the
AlphaServer 8400 procedures in Chapter 5.

6.1 Step 1: Choose a Configuration and Determine Hardware
Requirements

Quick Summary of the Only Possible AlphaServer 8200 Galaxy
Configuration

• 2 instances only

• 5 slots for:

– 2 processor modules (two CPUs each)

– 2 I/O modules

– 1 memory module

6.2 Step 2: Set Up Galaxy Hardware

When you have acquired the necessary hardware for your configuration, follow
the procedures in Section 5.2.1 through Section 5.2.4 in Chapter 5 and then in
this section.

6.2.1 Installing EISA Devices

Plug-in EISA devices can only be configured in partition 0. After installing
EISA devices, the console issues a message requesting that you run the EISA
Configuration Utility (ECU).

Run the ECU as follows:

1. Shut down all OpenVMS Galaxy instances.

2. Be sure your floppy disk drive is properly connected to the primary partitions
hardware. Typically the drive can be cabled into the connector module
("Beeper" part number 54-25133-01) in PCI slot 2.

3. Insert the diskette containing the ECU image.

4. Enter the following commands from the primary console:

P08>>> SET ARC_ENABLE ON
P08>>> INITIALIZE
P08>>> RUNECU

5. Follow the procedures outlined by the ECU and exit when done.

6. Enter the following commands from the primary console:

P08>>> boot
$ @SYS$SYSTEM:SHUTDOWN
P08>>> SET ARC_ENABLE OFF

Creating an OpenVMS Galaxy on an AlphaServer 8200 System 6–1

P08>>> INITIALIZE
P08>>> LPINIT

7. Reboot the OpenVMS Galaxy.

There are two versions of the ECU, one that runs on a graphics terminal and
another that runs on character-cell terminals. Both versions are on the diskette,
and the console determines which one to run. For OpenVMS Galaxy systems, the
primary console is always a serial device with a character-cell terminal.

If the ECU is not run, OpenVMS displays the following message:

%SYSTEM-I-NOCONFIGDATA, IRQ Configuration data for EISA
slot xxx was not found, please run the ECU and reboot.

If you ignore this message, the system boots, but the plug-in EISA devices are
ignored.

Once you have configured and set up the OpenVMS Galaxy hardware as described
in the previous sections, perform the following steps to install and boot OpenVMS
Galaxy instances.

6.3 Step 3: Create a System Disk

Decide whether to use a system disk per instance or whether to use a cluster
common disk.

A new SECURITY.EXE is required for all cluster members running a version
prior to OpenVMS Version 7.1-2 that share the same VMS$OBJECTS.DAT file
with Galaxy instances.

6.4 Step 4: Install OpenVMS Alpha Version 7.3

No special installation procedures are required to run OpenVMS Galaxy software.
Galaxy functionality is included in the base operating system and can be enabled
or disabled using the console command and system parameter values described
later in this chapter.

For more information about installing the OpenVMS Alpha operating system, see
the OpenVMS Alpha Version 7.3 Upgrade and Installation Manual.

For information on OpenVMS Galaxy licensing, see the OpenVMS License
Management Utility Manual.

6.5 Step 5: Upgrade the Firmware

Creating an OpenVMS Galaxy environment on an AlphaServer 8200 requires a
firmware upgrade to each processor module. If you use these modules again in a
non-Galaxy configuration, you need to reinstall the previous firmware. It is a good
practice to have a current firmware CD on hand.

It saves some time if you install all processor modules you intend to use and
update them at the same time. The AlphaServer 8200 requires that you use the
same firmware on all processor boards. If you need to upgrade a board at a later
time, you must:

1. Remove all the boards that are not at the same firmware revision level.

2. Update the older boards.

3. Reinstall the remaining boards.

6–2 Creating an OpenVMS Galaxy on an AlphaServer 8200 System

To upgrade your firmware, the system must be powered on, running in non-Galaxy
mode (that is, the LP_COUNT console environment variable—if you have
established it—must be set to zero).

To set the console environment variable, enter the following commands:

P08>>> SET LP_COUNT 0
P08>>> INIT

To upgrade the firmware, use the standard console firmware update available from
AlphaySystems Engineering.

6.6 Step 6: Set the Environment Variables

When you have upgraded the firmware on all of your processor modules, you
can create the Galaxy-specific environment variables as shown in the following
example. This example assumes you are configuring a 2-instance, 4-CPU, 1-GB
OpenVMS Galaxy computing environment.

P08>>> create -nv lp_count 2
P08>>> create -nv lp_cpu_mask0 100
P08>>> create -nv lp_cpu_mask1 e00
P08>>> create -nv lp_io_mask0 100
P08>>> create -nv lp_io_mask1 80
P08>>> create -nv lp_mem_size0 10000000
P08>>> create -nv lp_mem_size1 10000000
P08>>> create -nv lp_shared_mem_size 20000000
P08>>> init

After you create these variables, you can use console SET commands to manipulate
them. These variables need only be created on processor 0.

The following descriptions give detailed information about each environment
variable.

LP_COUNT numbr

If set to zero, the system boots a traditional SMP configuration only. The Galaxy
console mode is OFF.

If set to a nonzero value, the Galaxy features are used, and the Galaxy variables
are interpreted. The exact value of LP_COUNT represents the number of Galaxy
partitions the console should expect.

LP_CPU_MASKn mask

This bit mask determines which CPUs are to be initially assigned to the specified
Galaxy partition number. The AlphaServer 8200 console chooses the first
even-numbered CPU as its primary CPU, beginning with CPU 08 for the initial
instance. Keep this in mind when assigning the resources. (In other words, do not
assign only an odd-numbered CPU to a partition.)

LP_IO_MASKn mask

These variables assign IO processors by slot number to each instance:

• 100 represents the I/O module in slot 8.

• 80 represents the I/O module in slot 7.

These are the only valid assignments for the AlphaServer 8200.

Creating an OpenVMS Galaxy on an AlphaServer 8200 System 6–3

LP_MEM_SIZEn size

These variables allocate a specific amount of private memory for the specified
instance. It is imperative that you create these variables using proper values
for the amount of memory in your system and the desired assignments for each
instance. See Table B–1 for the common values.

See also the shared memory variable on the following line.

LP_SHARED_MEM_SIZE size

This variable allocates memory for use as shared memory. See Table B–1 for the
common values.

_________________________ Tips _________________________

Shared memory must be assigned in multiples of 8 MB and all values
are expressed in hexadecimal bytes.

You can define only the amount of shared memory to use, and leave the
other LP_MEM_SIZE variables undefined. This causes the console to
allocate the shared memory from the high address space, and to split
the remaining memory equally among the number of partitions specified
by the LP_COUNT variable. If you also explicitly assign memory to a
specific partition using a LP_MEM_SIZE variable, but leave the other
partition memory assignments undefined, the console again assigns the
memory fragments for shared memory and any partitions with explicit
assignments, then splits and assigns the remaining memory to any
remaining partitions not having explicit memory assignments.

BOOTDEF_DEV and BOOT_OSFLAGS variables

Set these variables on each of your Galaxy consoles before booting to ensure that
AUTOGEN reboots correctly when it needs to reboot the system after an initial
installation and after a system crash or operator requested reboot.

Galaxy Environment Variables Example

P08>>> SHOW LP*

lp_count 2
lp_shared_mem_size 20000000 (512 MB)
lp_mem_size0 10000000 (256 MB)
lp_mem_size1 10000000 (256 MB)
lp_cpu_mask0 100 (CPU 0)
lp_cpu_mask1 e00 (CPUs 1-3)
lp_io_mask0 100 (I/O module in slot 8)
lp_io_mask1 80 (I/O module in slot 7)

P08>>>

6.7 Step 7: Start the Secondary Console Device

If the KFE72-DA was configured for Windows NT, it expects to find the video board
and hangs if one is not present. This is a common occurrence when configuring
an OpenVMS Galaxy. Use this console command to set the mode of operation
as follows:

P08>>> SET CONSOLE SERIAL

6–4 Creating an OpenVMS Galaxy on an AlphaServer 8200 System

When you enter this command to the primary console before initializing the
secondary console, the setting is propagated to the secondary console hardware.

If you decide to use the Ethernet port, you may need to inform the console of
which media type and connection you intend to use: AUI, UDP, or twisted-pair.
The console and operating system determines which to use, but you can assign a
specific media type by entering the following commands:

P08>>> SHOW NETWORK

P08>>> SET EWA0_MODE TWISTED

The first command displays a list of available network devices. The second
command establishes the default media type for the specified device (EWA0 in
this example). This should be done for all Ethernet devices before initializing
the secondary console.

Once you have set your console mode and network media types (if used), reinitialize
the system to ensure that the current settings are saved. If you have already
defined your Galaxy partitions, you can initialize now. If you have not defined your
Galaxy partitions, defer initialization until later.

If you are ready to initialize the system, enter:

P08>>> INIT

You should see the primary console respond with its usual power-up self-test
(POST) report. This could take up to 2 minutes. If you have properly defined
the Galaxy partitions, only the I/O devices associated with the primary partition
are visible.

To verify that partitioning has occurred, enter:

P08>>> SHOW DEVICE

or

P08>>> SHOW NETWORK

To initialize the secondary console, enter:

P08>>> LPINIT

The console displays the following:

Partition 0: Primary CPU = 0
Partition 1: Primary CPU = 2
Partition 0: Memory Base = 000000000 Size = 010000000
Partition 1: Memory Base = 010000000 Size = 010000000
Shared Memory Base = 020000000 Size = 010000000
LP Configuration Tree = 12c000
starting cpu 1 in Partition 1 at address 01000c001
starting cpu 2 in Partition 1 at address 01000c001
starting cpu 3 in Partition 1 at address 01000c001

P08>>>

This command must be entered from the primary Galaxy console. If the Galaxy
partitions have been properly defined, and hardware resources have been properly
configured, you should see the primary console start the processors assigned to the
secondary partition. The secondary console should initialize within 2 minutes.

If one or more consoles fails to initialize, double-check your hardware installation,
Galaxy partition definitions, and hardware assignments.

Creating an OpenVMS Galaxy on an AlphaServer 8200 System 6–5

For more information about OpenVMS console restrictions and hints, see
Chapter 11.

6.8 Step 8: Boot the OpenVMS Galaxy

When you have correctly installed the Galaxy firmware and configured the
consoles, you can boot the initial Galaxy environment as follows:

For each Galaxy instance, enter the following commands:

P08>>> B -FL 0,1 DKA100 // or whatever your boot device is.

SYSBOOT> SET GALAXY 1

SYSBOOT> CONTINUE

Congratulations! You have created an OpenVMS Galaxy.

6–6 Creating an OpenVMS Galaxy on an AlphaServer 8200 System

7
Creating an OpenVMS Galaxy on an

AlphaServer 4100 System

This chapter describes the requirements and procedures to create an OpenVMS
Galaxy computing environment on an AlphaServer 4100.

7.1 Before You Start

To create an OpenVMS Galaxy on an AlphaServer 4100, you must be familiar with
the following configuration and hardware requirements:

Two-instance maximum

You can run a maximum of two instances of OpenVMS on an AlphaServer 4100.

Console firmware

You must have AlphaServer 4100 console firmware that is available on the
OpenVMS Version 7.3 CD-ROM.

Console commands

In addition to the console hints in Chapter 5, note the following:

• Enter console commands on one instance at a time.

• Do not enter console commands at another console until the command entered
at the first console has completed.

AlphaServer 4100 clock

An AlphaServer 4100 has one clock. For an OpenVMS Galaxy, this means that you
cannot run the two instances at different times. Also, the SET TIME command
affects both instances. Note that this may not become evident until a number
of hours have passed.

Console ports

COM1 (upper) is the console port for instance 0.
COM2 (lower) is the console port for instance 1.

Unlike creating an OpenVMS Galaxy on an AlphaServer 8400, you do not need
additional hardware for the second console. COM2 is used for this purpose.

CPUs

CPU0 must be the primary for instance 0.
CPU1 must be the primary for instance 1.
CPUs 2 and 3 are optional secondary CPUs that can be migrated.

I/O adapters

The four lower PCI slots belong to IOD0, which is the I/O adapter for instance 0.
The four upper PCI slots belong to IOD1, which is the I/O adapter for instance 1.

Creating an OpenVMS Galaxy on an AlphaServer 4100 System 7–1

Storage controllers

You need two storage controllers, such as KZPSAs. These can go to separate
StorageWorks boxes or to the same box for running as a SCSI cluster. One
controller each goes in IOD0 and IOD1.

Network cards

If each instance needs network access, a network card (such as a DE500) is
required for each instance.

One card each goes in IOD0 and IOD1.

Physical memory

Because OpenVMS Galaxy on an AlphaServer 4100 does not support memory
holes, physical memory for an OpenVMS Galaxy environment must be contiguous.
To achieve this on an AlphaServer 4100, one of the following must be true:

• All memory modules must be the same size (for example, 1 GB).

• If two sizes are present, only one module can be a smaller size. You must put
the larger modules into the lower numbered slots.

To create an OpenVMS Galaxy on an AlphaServer 4100 system, perform the steps
in the following sections.

7.2 Step 1: Confirm the AlphaServer 4100 Configuration
Use the SHOW CONFIG command to make sure that the AlphaServer 4100 you
are using to create an OpenVMS Galaxy environment meets the requirements
described in Section 7.1.

At the console prompt, enter the following command:

P00>>>show config

The console displays the following information:

Console G53_75 OpenVMS PALcode V1.19-16, Compaq UNIX PALcode V1.21-24

Module Type Rev Name
System Motherboard 0 0000 mthrbrd0
Memory 512 MB EDO 0 0000 mem0
Memory 256 MB EDO 0 0000 mem1
CPU (Uncached) 0 0000 cpu0
CPU (Uncached) 0 0000 cpu1
Bridge (IOD0/IOD1) 600 0021 iod0/iod1
PCI Motherboard 8 0000 saddle0
CPU (Uncached) 0 0000 cpu2
CPU (Uncached) 0 0001 cpu3

Bus 0 iod0 (PCI0)
Slot Option Name Type Rev Name
1 PCEB 4828086 0005 pceb0
4 DEC KZPSA 81011 0000 pks1
5 DECchip 21040-AA 21011 0023 tulip1

Bus 1 pceb0 (EISA Bridge connected to iod0, slot 1)
Slot Option Name Type Rev Name

Bus 0 iod1 (PCI1)
Slot Option Name Type Rev Name
1 NCR 53C810 11000 0002 ncr0
2 DECchip 21040-AA 21011 0024 tulip0

7–2 Creating an OpenVMS Galaxy on an AlphaServer 4100 System

3 DEC KZPSA 81011 0000 pks0

7.3 Step 2: Install OpenVMS Alpha Version 7.3

No special installation procedures are required to run OpenVMS Galaxy software.
Galaxy functionality is included in the base operating system and can be enabled
or disabled using the console command and system parameter values described
later in this chapter.

If your AlphaServer 4100 is not part of a SCSI cluster, you must install OpenVMS
Version 7.3 on two system disks—one disk for each instance.

If your AlphaServer 4100 is part of a SCSI cluster with a cluster-common system
disk, install OpenVMS Version 7.3 on one system disk.

For more information about installing the OpenVMS Alpha operating system, see
the OpenVMS Alpha Version 7.3–1 Upgrade and Installation Guide.

7.4 Step 3: Upgrade the Firmware

To upgrade the firmware, use the Alpha Systems Firmware Update Version 5.4
CD–ROM that is included in the OpenVMS Version 7.3 CD–ROM package. Be
sure to read the release notes that are included in the package before installing
the firmware.

7.5 Step 4: Set the Environment Variables

Configure the primary console for instance 0.

CPU0 is the primary for instance 0.

Create the Galaxy environment variables. For descriptions of the Galaxy
environment variables and common values for them, see Chapter 5.

The following example is for an AlphaServer 4100 with three CPUs and 512 MB
of memory divided into 256 MB + 192 MB + 64 MB:

P00>>> create -nv lp_count 2
P00>>> create -nv lp_cpu_mask0 1
P00>>> create -nv lp_cpu_mask1 6
P00>>> create -nv lp_io_mask0 10
P00>>> create -nv lp_io_mask1 20
P00>>> create -nv lp_mem_size0 10000000
P00>>> create -nv lp_mem_size1 c000000
P00>>> create -nv lp_shared_mem_size 4000000
P00>>> set auto_action halt

If you have four CPUs and you want to assign all secondary CPUs to instance
1, the LP_CPU_MASK1 variable will be E. If you split the CPUs between both
instances, CPU 0 must be the primary for instance 0, and CPU 1 must be the
primary CPU for instance 1.

The MEM_SIZE variables depend on your configuration and how you want to
split it up.

• galaxy_io_mask0 must be set to 10.

• galaxy_io_mask1 must be set to 20.

You must set the console environment variable AUTO_ACTION to HALT. This
ensures that the system does not boot and that you are able to enter the Galaxy
command.

Creating an OpenVMS Galaxy on an AlphaServer 4100 System 7–3

7.6 Step 5: Initialize the System and Start the Console Devices

1. Initialize the system and start the Galaxy firmware by entering the following
commands:

P00>>> init
P00>>> galaxy

After the self-test completes, the Galaxy command starts the console on
instance 1.

The first time that the Galaxy starts, it might display several messages like
the following:

CPU0 would not join

IOD0 and IOD1 did not pass the power-up self-test

This happens because there are two sets of environment variables, and the
Galaxy variables are not present initially on instance 1.

Note that when the I/O bus is divided between the two Galaxy partitions,
the port letter of a device might change. For example, a disk designated as
DKC300 when the AlphaServer 4100 is a single system could become DKA300
when it is configured as partition 0 of the OpenVMS Galaxy.

2. Configure the console for instance 1:

P01>>> create -nv lp_cpu_mask0 1
P01>>> create -nv lp_cpu_mask1 6
P01>>> create -nv lp_io_mask0 10
P01>>> create -nv lp_io_mask1 20
P01>>> create -nv lp_mem_size0 10000000
P01>>> create -nv lp_mem_size1 c000000
P01>>> create -nv lp_count 2
P01>>> create -nv lp_shared_mem_size 4000000
P01>>> set auto_action halt

3. Initialize the system and restart the Galaxy firmware by entering the
following command:

P00>>> init

When the console displays the following confirmation prompt, type Y:

Do you REALLY want to reset the Galaxy (Y/N)

4. Configure the system root, boot device, and other related variables.

The following example settings are from an OpenVMS Engineering system.
Change these variables to meet the needs of your own environment.

P00>>> set boot_osflags 12,0
P00>>> set bootdef_dev dka0
P00>>> set boot_reset off !!! must be OFF !!!
P00>>> set ewa0_mode twisted

P01>>> set boot_osflags 11,0
P01>>> set bootdef_dev dkb200
P01>>> set boot_reset off !!! must be OFF !!!
P01>>> set ewa0_mode twisted

5. Boot instance 1 as follows:

P01>>> boot

Once instance 1 is booted, log in to the system account and edit the
SYS$SYSTEM:MODPARAMS.DAT file to include the following line:

GALAXY=1

7–4 Creating an OpenVMS Galaxy on an AlphaServer 4100 System

Confirm that the lines for the SCS node and SCS system ID are correct. Run
AUTOGEN as follows to configure instance 1 as a Galaxy member, and leave
the system halted:

$ @SYS$UPDATE:AUTOGEN GETDATA SHUTDOWN INITIAL

6. Boot instance 0 as follows:

P00>>> boot

Once instance 0 is booted, log in to the system account and edit the
SYS$SYSTEM:MODPARAMS.DAT file to include the following line:

Add the line GALAXY=1

Confirm that the lines for the SCS node and SCS system ID are correct. Run
AUTOGEN as follows to configure instance 0 as a Galaxy member, and leave
the system halted:

$ @SYS$UPDATE:AUTOGEN GETDATA SHUTDOWN INITIAL

7. Prepare the Galaxy to come up automatically upon initialization or power
cycle of the system. Set the AUTO_ACTION environment variable on both
instances to RESTART:

P00>>> set auto_action restart

P01>>> set auto_action restart

8. Initialize the Galaxy again by entering the following command at the primary
console:

P00>>> init

When the console displays the following confirmation prompt, type Y:

Do you REALLY want to reset the Galaxy (Y/N)

Alternatively, you could power-cycle your system, and the Galaxy with both
instances should bootstrap automatically.

Congratulations! You have created an OpenVMS Galaxy.

Creating an OpenVMS Galaxy on an AlphaServer 4100 System 7–5

8
Creating an OpenVMS Galaxy on an

AlphaServer ES40 System

This chapter describes the requirements and procedures to create an OpenVMS
Galaxy computing environment on an AlphaServer ES40 system.

This chapter contains revised procedures that were originally published in the
OpenVMS Alpha VMS721_DS20E_ES40 remedial kit.

To create an OpenVMS Galaxy on an AlphaServer ES40 system:

1. Read the configuration and hardware requirements in Section 8.1.

2. Perform the steps in Section 8.2 through Section 8.6.

8.1 Before You Start

You must be familiar with the following AlphaServer ES40 configuration and
hardware requirements:

Two-instance maximum

You can run a maximum of two instances of OpenVMS on an AlphaServer ES40.

Console firmware

To create an OpenVMS Galaxy environment on AlphaServer ES40 systems, you
must download the latest version of the V6.2 console firmware from the following
location:

http://ftp.digital.com/pub/DEC/Alpha/firmware/

AlphaServer ES40 clock

An AlphaServer ES40 has one clock. For an OpenVMS Galaxy, this means that you
cannot run the two instances at different times. Also, the SET TIME command
affects both instances. This may not become evident until a number of hours
have passed.

Console ports

On a rack-mounted system:
COM1 (lower) is the console port for instance 0.
COM2 (upper) is the console port for instance 1.

On a pedestal system:
COM1 (left) is the console port for instance 0.
COM2 (right) is the console port for instance 1.

Unlike creating an OpenVMS Galaxy on an AlphaServer 8400, you do not need
additional hardware for the second console. COM2 is used for this purpose.

CPUs

CPU0 must be the primary for instance 0.
CPU1 must be the primary for instance 1.
CPUs 2 and 3 are optional secondary CPUs that can be migrated.

Creating an OpenVMS Galaxy on an AlphaServer ES40 System 8–1

For an example of the CPU environment variable settings on an AlphaServer
ES40, see Section 8.5.

I/O adapters

On a rack-mounted system:
PCI hose 0 (PCI0) belongs to instance 0 (upper 4 PCI slots)
PCI hose 1 (PCI1) belongs to instance 1 (lower 6 PCI slots)

On a pedestal system:
PCI hose 0 (PCI0) belongs to instance 0 (right-hand slots)
PCI hose 1 (PCI1) belongs to instance 1 (left-hand slots)

Note that PCI0 contains an embedded ISA controller.

To see an I/O adapter configuration example, see Section 8.2.

Storage controllers

You need one storage controller (such as a KZPSA) per instance. For each instance,
this can go to a separate StorageWorks box or to the same box for running as a
SCSI cluster.

Network cards

If each instance needs network access, a network card (such as a DE600) is
required for each instance.

One card each goes in PCI0 and PCI1.

Memory Granularity Restrictions

Private memory must start on a 64-MB boundary.

Shared memory must start on an 8-MB boundary.

Instance 0 must have a multiple of 64 MB.

8.2 Step 1: Confirm the AlphaServer ES40 Configuration
Use the SHOW CONFIG command to make sure that the AlphaServer ES40 you
are using to create an OpenVMS Galaxy environment meets the requirements
described in Section 8.1.

At the console prompt, enter the following command:

P00>>>show config

The console displays information similar to the following example:

Firmware
SRM Console: X5.6-2323
ARC Console: v5.70
PALcode: OpenVMS PALcode V1.61-2, Tru64 UNIX PALcode V1.54-2
Serial Rom: V2.2-F
RMC Rom: V1.0
RMC Flash Rom: T2.0

Processors
CPU 0 Alpha 21264-4 500 MHz 4MB Bcache
CPU 1 Alpha 21264-4 500 MHz 4MB Bcache
CPU 2 Alpha 21264-4 500 MHz 4MB Bcache
CPU 3 Alpha 21264-4 500 MHz 4MB Bcache

Core Logic
Cchip DECchip 21272-CA Rev 9(C4)
Dchip DECchip 21272-DA Rev 2

8–2 Creating an OpenVMS Galaxy on an AlphaServer ES40 System

Pchip 0 DECchip 21272-EA Rev 2
Pchip 1 DECchip 21272-EA Rev 2
TIG Rev 10

Memory
Array Size Base Address Intlv Mode

--------- ---------- ---------------- ----------
0 4096Mb 0000000000000000 2-Way
1 4096Mb 0000000100000000 2-Way
2 1024Mb 0000000200000000 2-Way
3 1024Mb 0000000240000000 2-Way

10240 MB of System Memory

Slot Option Hose 0, Bus 0, PCI
1 DAPCA-FA ATM622 MMF
2 DECchip 21152-AA Bridge to Bus 2, PCI
3 DEC PCI FDDI fwb0.0.0.3.0 00-00-F8-BD-C6-5C
4 DEC PowerStorm
7 Acer Labs M1543C Bridge to Bus 1, ISA

15 Acer Labs M1543C IDE dqa.0.0.15.0
dqb.0.1.15.0
dqa0.0.0.15.0 TOSHIBA CD-ROM XM-6302B

19 Acer Labs M1543C USB

Option Hose 0, Bus 1, ISA
Floppy dva0.0.0.1000.0

Slot Option Hose 0, Bus 2, PCI
0 NCR 53C875 pkd0.7.0.2000.0 SCSI Bus ID 7
1 NCR 53C875 pke0.7.0.2001.0 SCSI Bus ID 7

dke100.1.0.2001.0 RZ1BB-CS
dke200.2.0.2001.0 RZ1BB-CS
dke300.3.0.2001.0 RZ1CB-CS
dke400.4.0.2001.0 RZ1CB-CS

2 DE500-AA Network Con ewa0.0.0.2002.0 00-06-2B-00-0A-58

Slot Option Hose 1, Bus 0, PCI
1 NCR 53C895 pka0.7.0.1.1 SCSI Bus ID 7

dka100.1.0.1.1 RZ2CA-LA
dka300.3.0.1.1 RZ2CA-LA

2 Fore ATM 155/622 Ada
3 DEC PCI FDDI fwa0.0.0.3.1 00-00-F8-45-B2-CE
4 QLogic ISP10x0 pkb0.7.0.4.1 SCSI Bus ID 7

dkb100.1.0.4.1 HSZ50-AX
dkb101.1.0.4.1 HSZ50-AX
dkb200.2.0.4.1 HSZ50-AX
dkb201.2.0.4.1 HSZ50-AX
dkb202.2.0.4.1 HSZ50-AX

5 QLogic ISP10x0 pkc0.7.0.5.1 SCSI Bus ID 7
dkc100.1.0.5.1 RZ1CB-CS
dkc200.2.0.5.1 RZ1CB-CS
dkc300.3.0.5.1 RZ1CB-CS
dkc400.4.0.5.1 RZ1CB-CS

6 DECchip 21154-AA Bridge to Bus 2, PCI

Slot Option Hose 1, Bus 2, PCI
4 DE602-AA eia0.0.0.2004.1 00-08-C7-91-0A-AA
5 DE602-AA eib0.0.0.2005.1 00-08-C7-91-0A-AB
6 DE602-TA eic0.0.0.2006.1 00-08-C7-66-80-9E
7 DE602-TA eid0.0.0.2007.1 00-08-C7-66-80-5E

8.3 Step 2: Install OpenVMS Alpha Version 7.3–1

No special installation procedures are required to run OpenVMS Galaxy software.
Galaxy functionality is included in the base operating system and can be enabled

Creating an OpenVMS Galaxy on an AlphaServer ES40 System 8–3

or disabled using the console command and system parameter values described
later in this chapter.

If your AlphaServer ES40 is not part of a SCSI cluster, you must install OpenVMS
Version 7.3–1 on two system disks—one disk for each instance.

If your AlphaServer ES40 is part of a SCSI cluster with a cluster-common system
disk, install OpenVMS Version 7.3–1 on one system disk.

For more information about installing the OpenVMS Alpha operating system, see
the OpenVMS Alpha Version 7.3–1 Upgrade and Installation Guide.

8.4 Step 3: Upgrade the Firmware
To upgrade the firmware, use one of the following procedures:

Copy the firmware file to MOM$SYSTEM on a MOP-enabled server that is
accessible to the AlphaServer ES40. Enter the following commands on the console:

P00>>> boot -fl 0,0 ewa0 -fi {firmware filename}
UPD> update srm*
power-cycle system

Or, use the following commands:

P00>>> BOOT -FLAGS 0,A0 cd_device_name
.
.
.
Bootfile: {firmware filename}
.
.
.

8.5 Step 4: Set the Environment Variables
Configure the primary console for instance 0.

CPU0 is the primary for instance 0. CPU1 is the primary for instance 1.

The following example is for an AlphaServer ES40 with three CPUs and 512 MB
of memory divided into 256 MB + 192 MB + 64 MB:

P00>>> set lp_count 2
P00>>> set lp_cpu_mask0 1
P00>>> set lp_cpu_mask1 6
P00>>> set lp_io_mask0 1
P00>>> set lp_io_mask1 2
P00>>> set lp_mem_size0 10000000
P00>>> set lp_mem_size1 c000000
P00>>> set lp_shared_mem_size 4000000
P00>>> set console_memory_allocation new
P00>>> set auto_action halt

If you have four CPUs and you want to assign all secondary CPUs to instance
1, the LP_CPU_MASK1 variable will be E. If you split the CPUs between both
instances, CPU 0 must be the primary for instance 0, and CPU 1 must be the
primary CPU for instance 1.

The following example shows LP_CPU_MASK values for secondary CPU
assignments with primary CPUs:

Assign secondary CPU 2 with primary CPU 0 and secondary CPU

8–4 Creating an OpenVMS Galaxy on an AlphaServer ES40 System

3 with primary CPU 1.

>>>set lp_cpu_mask0 5
>>>set lp_cpu_mask1 A

CPU Selection LP_CPU_MASK

0(primary partition 0) 2^0 = 1
1(primary partition 1) 2^1 = 2
2(secondary) 2^2 = 4
3(secondary) 2^3 = 8

The MEM_SIZE variables depend on your configuration and how you want to
split it up.

• lp_io_mask0 must be set to 1.

• lp_io_mask1 must be set to 2.

You must set the console environment variable AUTO_ACTION to HALT. This
ensures that the system does not boot and that you are able to enter the LPINIT
command.

8.6 Step 5: Initialize the System and Start the Console Devices

1. Initialize the system and start the Galaxy firmware by entering the following
commands:

P00>>> init ! initialize the system
P00>>> lpinit ! start firmware

After the self-test completes, the Galaxy command starts the console on
instance 1.

Note that when the I/O bus is divided between the two Galaxy partitions,
the port letter of a device might change. For example, a disk designated as
DKC300 when the AlphaServer ES40 is a single system could become DKA300
when it is configured as partition 0 of the OpenVMS Galaxy.

2. Configure the console for instance 1.

3. Configure the system root, boot device, and other related variables.

The following example settings are from an OpenVMS Engineering system.
Change these variables to meet the needs of your own environment.

Instance 0
P00>>> set boot_osflags 12,0
P00>>> set bootdef_dev dka0
P00>>> set boot_reset off !!! must be OFF !!!
P00>>> set ewa0_mode twisted

Instance 1
P01>>> set boot_osflags 11,0
P01>>> set bootdef_dev dkb200
P01>>> set boot_reset off !!! must be OFF !!!
P01>>> set ewa0_mode twisted

4. Boot instance 1 as follows:

P01>>> boot

Once instance 1 is booted, log in to the system account and edit the
SYS$SYSTEM:MODPARAMS.DAT file to include the following line:

Creating an OpenVMS Galaxy on an AlphaServer ES40 System 8–5

GALAXY=1

Confirm that the SCSNODE and SCSSYSTEMID SYSGEN parameters are
correct. Run AUTOGEN as follows to configure instance 1 as a Galaxy
member, and leave the system halted:

$ @SYS$UPDATE:AUTOGEN GETDATA SHUTDOWN INITIAL

5. Boot instance 0 as follows:

P00>>> boot

Once instance 0 is booted, log in to the system account and edit the
SYS$SYSTEM:MODPARAMS.DAT file to include the following line:

GALAXY=1

Confirm that the SCSNODE and SCSSYSTEMID SYSGEN parameters are
correct. Run AUTOGEN as follows to configure instance 0 as a Galaxy
member, and leave the system halted:

$ @SYS$UPDATE:AUTOGEN GETDATA SHUTDOWN INITIAL

6. Prepare the Galaxy to come up automatically upon initialization or power
cycle of the system. Set the AUTO_ACTION environment variable on both
instances to RESTART:

P00>>> set auto_action restart

P01>>> set auto_action restart

7. Initialize the Galaxy again by entering the following command at the primary
console:

P00>>> init

When the console displays the following confirmation prompt, type Y:

Do you REALLY want to reset all partitions? (Y/N)

Alternatively, you could power-cycle your system, and the Galaxy with both
instances should bootstrap automatically.

Congratulations! You have created an OpenVMS Galaxy on an AlphaServer ES40
system.

8–6 Creating an OpenVMS Galaxy on an AlphaServer ES40 System

9
Creating an OpenVMS Galaxy on AlphaServer

GS80/160/320 Systems

This chapter describes the process to create an OpenVMS Galaxy computing
environment on AlphaServer GS80/160/320 systems.

9.1 Step 1: Choose a Configuration and Determine Hardware
Requirements

OpenVMS Alpha Version 7.3 supports the following maximum configuration on
AlphaServer GS160 systems:

4 instances

4 QBBs

16 CPUs

128 GB memory

Rules:

Must have standard COM1 UART console line for each partition

Must have PCI drawer for each partition

Must have an I/O module per partition

Must have at least one CPU module per partition

Must have at least one memory module per partition

9.2 Step 2: Set Up the Hardware

When you have acquired the necessary hardware for your configuration, follow the
procedures in the appropriate hardware manuals to assemble it.

9.3 Step 3: Create a System Disk

Decide whether to use a system disk per instance or whether to use a cluster
common-disk.

A new SECURITY.EXE file is required for all cluster members running a version
prior to OpenVMS Version 7.1-2 that share the same VMS$OBJECTS.DAT file
with Galaxy instances. .))

9.4 Step 4: Install OpenVMS Alpha Version 7.3

No special installation procedures are required to run OpenVMS Galaxy software.
Galaxy functionality is included in the base operating system and can be enabled
or disabled using the console command and system parameter values described
later in this chapter.

For more information about installing the OpenVMS Alpha operating system, see
the OpenVMS Alpha Version 7.3 Upgrade and Installation Manual.

Creating an OpenVMS Galaxy on AlphaServer GS80/160/320 Systems 9–1

9.4.1 OpenVMS Galaxy Licensing Information

In a Galaxy environment, the OPENVMS-GALAXY license units are checked
during system startup and whenever a CPU reassignment between instances
occurs.

If you attempt to start a CPU and there are insufficient OPENVMS-GALAXY
license units to support it, the CPU remaind in the instance’s configured set but it
is stopped. You can subsequently load the appropriate license units and start the
stopped CPU while the system is running. This is true of one or more CPUs.

9.5 Step 5: Set the Environment Variables

When you have installed the operating system, you can set the Galaxy-specific
environment variables as shown in the examples in this section.

9.5.1 AlphaServer GS160 Example

This example for an AlphaServer GS160 assumes you are configuring an OpenVMS
Galaxy computing environment with:

4 instances

4 QBBs

16 CPUs

32 GB of memory

P00>>>show lp*

lp_count 4
lp_cpu_mask0 000F
lp_cpu_mask1 00F0
lp_cpu_mask2 0F00
lp_cpu_mask3 F000
lp_cpu_mask4 0
lp_cpu_mask5 0
lp_cpu_mask6 0
lp_cpu_mask7 0
lp_error_target 0
lp_io_mask0 1
lp_io_mask1 2
lp_io_mask2 4
lp_io_mask3 8
lp_io_mask4 0
lp_io_mask5 0
lp_io_mask6 0
lp_io_mask7 0
lp_mem_size0 0=4gb
lp_mem_size1 1=4gb
lp_mem_size2 2=4gb
lp_mem_size3 3=4gb
lp_mem_size4 0
lp_mem_size5 0
lp_mem_size6 0
lp_mem_size7 0
lp_shared_mem_size 16gb

P00>>>lpinit

9–2 Creating an OpenVMS Galaxy on AlphaServer GS80/160/320 Systems

9.5.2 AlphaServer GS320 Example

This example for an AlphaServer GS320 system assumes you are configuring an
OpenVMS Galaxy computing environment with:

4 instances

8 QBBs

32 CPUs

32 GB memory

P00>>>show lp*

lp_count 4
lp_cpu_mask0 000F000F
lp_cpu_mask1 00F000F0
lp_cpu_mask2 0F000F00
lp_cpu_mask3 F000F000
lp_cpu_mask4 0
lp_cpu_mask5 0
lp_cpu_mask6 0
lp_cpu_mask7 0
lp_error_target 0
lp_io_mask0 11
lp_io_mask1 22
lp_io_mask2 44
lp_io_mask3 88
lp_io_mask4 0
lp_io_mask5 0
lp_io_mask6 0
lp_io_mask7 0
lp_mem_size0 0=2gb, 4=2gb
lp_mem_size1 1=2gb, 5=2gb
lp_mem_size2 2=2gb, 6=2gb
lp_mem_size3 3=2gb, 7=2gb
lp_mem_size4 0
lp_mem_size5 0
lp_mem_size6 0
lp_mem_size7 0
lp_shared_mem_size 16gb

P00>>>lpinit

9.5.3 Environment Variable Descriptions

This section describes each environment variable. For more details about using
these variables, see the AlphaServer GS80/160/320 Firmware Reference Manual.

LP_COUNT number

If set to zero, the system boots a traditional SMP configuration only. The Galaxy
console mode is OFF.

If set to a nonzero value, the Galaxy features are used, and the Galaxy variables
are interpreted. The exact value of LP_COUNT represents the number of Galaxy
partitions the console creates.

Note that if you assign resources for three partitions and set LP_COUNT to two,
the remaining resources are left unassigned.

Creating an OpenVMS Galaxy on AlphaServer GS80/160/320 Systems 9–3

LP_CPU_MASKn mask

This bit mask determines which CPUs are to be initially assigned to the specified
Galaxy partition number. The AlphaServer GS160 console chooses the first CPU
that passes the self test in a partition as its primary CPU.

LP_ERROR_TARGET

The new Alphaserver GS series introduces a new Galaxy environment variable
called LP_ERROR_TARGET. The value of the variable is the number of the
Galaxy instance that system errors are initially reported to. Unlike other Galaxy
platforms, all system correctable, uncorrectable, and system event errors go to a
single instance. It is possible for the operating system to change this target, so the
value of the variable represents the target when the system is first partitioned.

Every effort is made to isolate system errors to a single instance so that the error
does not bring down the entire Galaxy. The error target instance determines, on
receipt of an error, if it is safe to remotely crash the single instance that incurred
the error. A bugcheck code of GLXRMTMCHK is used in this case. Note that
error log information pertaining to the error is on the error target instance, not
necessarily on the instance that incurred the error.

While every effort is made to keep the error target instance identical to the one
the user designated with the environment variable, the software monitors the
instances and changes the error target if necessary.

LP_IO_MASKn mask

These variables assign the I/O modules by QBB number to each instance:

Mask Value QBB Number

1 QBB 0

2 QBB 1

4 QBB 2

8 QBB 3

For the n, supply the partition number (0 - 7). The value mask gives a binary mask
indicating which QBB’s (containing I/O risers) are included in the partition.

LP_MEM_SIZEn size

These variables allocate a specific amount of private memory for the specified
instance. It is imperative that you create these variables using proper values for the
amount of memory in your system and the desired assignments for each instance.

You can define only the amount of shared memory to use, and leave the other
LP_MEM_SIZE variables undefined. This causes the console to allocate the shared
memory from the high address space, and split the remaining memory equally
among the number of partitions specified by the LP_COUNT variable. If you also
explicitly assign memory to a specific partition using a LP_MEM_SIZE variable,
but leave other partition memory assignments undefined, the console again
assigns the memory fragments for shared memory and any partitions with explicit
assignments, then splits and assigns the remaining memory to any remaining
partitions not having explicit memory assignments.

For example:

lp_mem_size0 0=2gb, 1=2gb

9–4 Creating an OpenVMS Galaxy on AlphaServer GS80/160/320 Systems

_________________________ Note _________________________

Do not assign private memory to an instance from a QBB that has
no CPUs in the instance.

For example, if LP_CPU_MASK0 is FF, then you should only assign
private memory for instance 0 from QBBs 0 and 1.

See the AlphaServer GS80/160/320 Firmware Reference Manual for more details
about using this variable.

LP_SHARED_MEM_SIZE size

This variable allocates memory for use as shared memory. For example:

lp_shared_mem_size 16gb

Shared memory must be assigned in multiples of 8 MB.

See the AlphaServer GS80/160/320 Firmware Reference Manual for more details
about using this variable.

BOOTDEF_DEV and BOOT_OSFLAGS variables

Set these variables on each of your Galaxy consoles before booting to ensure that
AUTOGEN reboots correctly when it needs to reboot the system after an initial
installation and after a system failure or operator-requested reboot.

9.6 Step 6: Start the Secondary Console Devices
If you decide to use the Ethernet port, you may need to inform the console which
media type and connection you intend to use: AUI, UDP, or twisted pair. The
console and operating system determine which to use, but you can assign a specific
media type by entering the following commands:

P00>>> SHOW NETWORK

P00>>> SET EWA0_MODE TWISTED

The first command displays a list of available network devices. The second
command establishes the default media type for the specified device (EWA0 in
this example). This should be done for all Ethernet devices before initializing
the secondary consoles.

9.7 Step 7: Initialize the Secondary Consoles
Once you have established the Galaxy variables, to initialize the secondary
consoles, enter:

P00>>> LPINIT

The console displays the following:

P00>>>lpinit
lp_count = 2
lp_mem_size0 = 1800 (6 GB)
CPU 0 chosen as primary CPU for partition 0
lp_mem_size1 = 1800 (6 GB)
CPU 4 chosen as primary CPU for partition 1
lp_shared_mem_size = 1000 (4 GB)
initializing shared memory
partitioning system
QBB 0 PCA 0 Target 0 Interrupt Count = 2
QBB 0 PCA 0 Target 0 Interrupt CPU = 0
Interrupt Enable = 000011110000d05a

Creating an OpenVMS Galaxy on AlphaServer GS80/160/320 Systems 9–5

Sent Interrupts = 0000100000000010
Enabled Sent Interrupts = 0000100000000010
Acknowledging Sent Interrupt 0000000000000010 for CPU 0
QBB 0 PCA 0 Target 0 Interrupt Count = 1
QBB 0 PCA 0 Target 0 Interrupt CPU = 0
Interrupt Enable = 000011110000d05a
Sent Interrupts = 0000100000000000 Enabled Sent Interrupts = 0000100000000000
Acknowledging Sent Interrupt 0000100000000000 for CPU 0

OpenVMS PALcode V1.80-1, Tru64 UNIX PALcode V1.74-1

system = QBB 0 1 2 3 + HS (Hard Partition 0)
QBB 0 = CPU 0 1 2 3 + Mem 0 + Dir + IOP + PCA 0 1 + GP (Hard QBB 0)
QBB 1 = CPU 0 1 2 3 + Mem 0 + Dir + IOP + PCA 0 1 + GP (Hard QBB 1)
QBB 2 = CPU 0 1 2 3 + Mem 0 + Dir + IOP + PCA + GP (Hard QBB 4)
QBB 3 = CPU 0 1 2 3 + Mem 0 + Dir + IOP + PCA + GP (Hard QBB 5)

partition 0
CPU 0 1 2 3 8 9 10 11
IOP 0 2
private memory size is 6 GB
shared memory size is 4 GB

micro firmware version is T5.4
shared RAM version is 1.4
hose 0 has a standard I/O module
starting console on CPU 0
QBB 0 memory, 4 GB
QBB 1 memory, 4 GB
QBB 2 memory, 4 GB
QBB 3 memory, 4 GB
total memory, 16 GB
probing hose 0, PCI
probing PCI-to-ISA bridge, bus 1
bus 1, slot 0 -- dva -- Floppy
bus 0, slot 1 -- pka -- QLogic ISP10x0
bus 0, slot 2 -- pkb -- QLogic ISP10x0
bus 0, slot 3 -- ewa -- DE500-BA Network Controller
bus 0, slot 15 -- dqa -- Acer Labs M1543C IDE
probing hose 1, PCI
probing hose 2, PCI
bus 0, slot 1 -- fwa -- DEC PCI FDDI
probing hose 3, PCI
starting console on CPU 1
starting console on CPU 2
starting console on CPU 3
starting console on CPU 8
starting console on CPU 9
starting console on CPU 10
starting console on CPU 11
initializing GCT/FRU at 1fa000
initializing pka pkb ewa fwa dqa
Testing the System
Testing the Disks (read only)
Testing the Network
AlphaServer Console X5.8-2842, built on Apr 6 2000 at 01:43:42
P00>>>

This command must be entered from the primary Galaxy console. If the Galaxy
partitions have been properly defined, and hardware resources have been properly
configured, you should see that the primary CPU in each instance has started.

If one or more consoles fails to initialize, double-check your hardware installation,
Galaxy partition definitions, and hardware assignments.

9.8 Step 8: Boot the OpenVMS Galaxy

When you have correctly installed the Galaxy firmware and configured the
consoles, you can boot the initial Galaxy environment as follows:

9–6 Creating an OpenVMS Galaxy on AlphaServer GS80/160/320 Systems

For each Galaxy instance:

P00>>> B -FL 0,1 DKA100 // or whatever your boot device is.

SYSBOOT> SET GALAXY 1

SYSBOOT> CONTINUE

Congratulations! You have created an OpenVMS Galaxy.

Creating an OpenVMS Galaxy on AlphaServer GS80/160/320 Systems 9–7

10
Using a Single-Instance Galaxy on Any Alpha

System

Since OpenVMS Alpha Version 7.2, it has been possible to run a single-instance
Galaxy on any Alpha platform. This capability allows early adopters to evaluate
OpenVMS Galaxy features and, most important, to develop and test Galaxy-aware
applications without incurring the expense of setting up a full-scale Galaxy
computing environment on a system capable of running multiple instances of
OpenVMS (for example, an AlphaServer 8400).

A single-instance Galaxy running on any Alpha system is not an emulator. It is
OpenVMS Galaxy code with Galaxy interfaces and underlying operating system
functions. All Galaxy APIs are present in a single-instance Galaxy (for example,
resource management, shared memory access, event notification, locking for
synchronization, and shared memory for global sections).

Any application that is run on a single-instance Galaxy exercises the identical
operating system code on a multiple-instance Galaxy system. This is accomplished
by creating the configuration file SYS$SYSTEM:GLX$GCT.BIN, which OpenVMS
reads into memory. On a Galaxy platform (for example, an AlphaServer 8400),
the console places configuration data in memory for OpenVMS to use. Once the
configuration data is in memory, regardless of its origin, OpenVMS boots as a
Galaxy instance.

To use the Galaxy Configuration Utility (GCU) to create a single-instance Galaxy
on any Alpha system, use the following procedure:

1. Run the GCU on the OpenVMS Alpha system on which you want to use the
single-instance Galaxy.

2. If the GCU is run on a non-Galaxy system, it asks you if you want to create a
single-instance Galaxy. Click on OK.

3. The GCU prompts next for the amount of memory to designate as shared
memory. Enter any value that is a multiple of 8 MB. Note that you must specify
at least 8 MB of shared memory if you want to boot as a Galaxy instance.

4. Once the GCU has displayed the configuration, it has already written the file
GLX$GCT.BIN to the current directory. You can exit the GCU at this point.
If you made a mistake or want to alter the configuration, you can close the
current model and repeat the process.

To reboot the system as a Galaxy instance:

1. Copy the GLX$GCT.BIN file to SYS$SYSROOT:[SYSEXE]GLX$GCT.BIN.

2. Shut down the system.

3. Reboot with a conversational boot command. For example:

>>> B -FL 0,1 device

4. Enter the following commands:

SYSBOOT> SET GALAXY 1
SYSBOOT> CONTINUE

5. Add GALAXY=1 to SYS$SYSTEM:MODPARAMS.DAT.

Using a Single-Instance Galaxy on Any Alpha System 10–1

11
OpenVMS Galaxy Tips and Techniques

This chapter contains information that OpenVMS Engineering has found useful in
creating and running OpenVMS Galaxy environments.

11.1 System Auto-Action

Upon system power-up, if the AUTO_ACTION console environment variable is set
to BOOT or RESTART for instance 0, then the GALAXY command is automatically
issued and instance 0 attempts to boot.

The setting of AUTO_ACTION in the console environment variables for the other
instances dictates their behavior when entering the GALAXY command (whether
it is entered automatically or by the user from the console).

To set up your system for this feature, you must set the console environment
variable AUTO_ACTION to RESTART or BOOT on each instance. Make sure
to specify appropriate values for the BOOT_OSFLAGS and BOOTDEF_DEV
environment variables for each instance.

11.2 Changing Console Environment variables

Once you have established the initial set of LP_* environment variables for
OpenVMS Galaxy operation and booted your system, changing environment
variable values requires that you first reinitialize the system, change the values,
and reinitialize again. Wrapping the changes between INIT commands is required
to properly propagate the new values to all partitions.

_________________________ Note _________________________

For AlphaServer 4100 systems no INIT command is needed to start, but
you must change these variables on both instances.

11.3 Console Hints

The AlphaServer 8400 and 8200 systems were designed before the Galaxy Software
Architecture, so the OpenVMS Galaxy console firmware and system operations
must accommodate a few restrictions.

The following list briefly describes some issues to be aware of and some things to
avoid doing:

• Do not set the BOOT_RESET environment variable to 1. This causes each
secondary console to reset the bus before booting, which resets all previously
booted partitions. Remember that OpenVMS Galaxy partitions share the
hardware.

• Be patient. Console initialization and system rebooting can take several
minutes.

• Do not attempt to abort a firmware update process!

This can hang your system.

OpenVMS Galaxy Tips and Techniques 11–1

• When updating console firmware, update all CPUs at the same time.

You cannot run two different types of CPUs or two different firmware revisions.
If you fail to provide consistent firmware revisions, the system hangs on
power-up.

• Never enter the GALAXY command from a secondary console. This reinitializes
the system, and you need to start over from the primary console.

11.4 Turning Off Galaxy Mode

If you want to turn off OpenVMS Galaxy software, change the LP_COUNT
environment variable as follows and enter the following commands:

>>> SET LP_COUNT 0 ! Return to monolithic SMP config
>>> INIT ! Return to single SMP console
>>> B -fl 0,1 device ! Stop at SYSBOOT
SYSBOOT> SET GALAXY 0
SYSBOOT> CONTINUE

11–2 OpenVMS Galaxy Tips and Techniques

12
OpenVMS Galaxy Configuration Utility

The Galaxy Configuration Utility (GCU) is a DECwindows Motif application that
allows system managers to configure and manage an OpenVMS Galaxy system
from a single workstation window.

Using the GCU, system managers can:

• Display the active Galaxy configuration.

• Reassign resources among Galaxy instances.

• View resource-specific characteristics.

• Shut down or reboot one or more Galaxy instances.

• Invoke additional management tools.

• Create and engage Galaxy configuration models.

• Create a single-instance Galaxy on any Alpha system (for software development
on non-Galaxy hardware platforms).

• View the online Galaxy documentation.

• Determine hot-swap characteristics of the current hardware platform.

The GCU resides in the SYS$SYSTEM directory along with a small number of
files containing configuration knowledge.

The GCU consists of the following files:

File Description

SYS$SYSTEM:GCU.EXE GCU executable image

SYS$MANAGER:GCU.DAT Optional DECwindows resource file

SYS$MANAGER:GALAXY.GCR Galaxy Configuration Ruleset

SYS$MANAGER:GCU$ACTIONS.COM System management procedures

SYS$MANAGER:xxx.GCM User-defined configuration models

SYS$HELP:GALAXY_GUIDE.DECW$BOOK Online help in Bookreader form

The GCU can be run from any Galaxy instance. If the system does not directly
support graphics output, then the DECwindows display can be set to an external
workstation or suitably configured PC. However, the GCU application itself must
always run on the Galaxy system.

When the GCU is started, it loads any customizations found in its resource file
(GCU.DAT); then it loads the Galaxy Configuration Ruleset (GALAXY.GCR). The
ruleset file contains statements that determine the way the GCU displays the
various system components, and includes rules that govern the ways in which
users can interact with the configuration display. Users do not typically alter the
ruleset file unless they are well versed in its structure or are directed to do so by
a Compaq Services engineer.

After the GCU display becomes visible, the GCU determines whether the system is
currently configured as an OpenVMS Galaxy or as a single-instance Galaxy on a

OpenVMS Galaxy Configuration Utility 12–1

non-Galaxy platform. If the system is configured as a Galaxy, the GCU displays
the active Galaxy configuration model. The main observation window displays a
hierarchical view of the Galaxy. If the system has not yet been configured as a
Galaxy, the GCU prompts you as to whether or not to create a single-instance
Galaxy. Note that the GCU can create a single-instance Galaxy on any Alpha
system, but multiple-instance OpenVMS Galaxy environments are created by
using console commands and console environment variables.

Once the Galaxy configuration model is displayed, users can either interact with
the active model or take the model off line and define specific configurations for
later use. The following sections discuss these functions in greater detail.

12.1 GCU Tour

The GCU can perform three types of operations:

• Create Galaxy configuration models or a single-instance Galaxy (Section
Section 12.1.1).

• Observe active Galaxy resources (Section Section 12.1.2).

• Interact with active Galaxy resource configurations (Section Section 12.1.3).

Most GCU operations are organized around the main observation window and its
hierarchical display of Galaxy components. The observation window provides
a porthole into a very large space. The observation window can be panned and
zoomed as needed to observe part of or all of the entire Galaxy configuration. The
main toolbar contains a set of buttons that control workspace zoom operations.
Workspace panning is controlled by the horizontal and vertical scrollbars;
workspace sliding is achieved by holding down the middle mouse button as you
drag the workspace around. This assumes you have a three-button mouse.

The various GCU operations are invoked from pull-down or pop-up menu functions.
General operations such as opening and closing files, and invoking external
tools, are accomplished using the main menu bar entries. Operations specific
to individual Galaxy components are accomplished using pop-up menus that
appear whenever you click the right mouse button on a component displayed in
the observation window.

In response to many operations, the GCU displays additional dialog boxes
containing information, forms, editors, or prompts. Error and information
responses are displayed in pop-up dialog boxes or inside the status bar along the
bottom of the window, depending on the severity of the error and importance of
the message.

12.1.1 Creating Galaxy Configuration Models

You can use the GCU to create Galaxy configuration models and a single-instance
Galaxy on any Alpha system.

When viewing the active Galaxy configuration model, direct manipulation of
display objects (components) may alter the running configuration. For example,
dragging a CPU from its current location and dropping it on top of a different
instance component invokes a management action procedure that reassigns the
selected CPU to the new instance. At certain times this may be a desirable
operation; however, in other situations you might want to reconfigure your Galaxy
all at once rather than by individual component. To accomplish this, you must
create an offline Galaxy configuration model.

12–2 OpenVMS Galaxy Configuration Utility

To create a Galaxy configuration model, you must start with an existing model,
typically the active one, alter it in some manner, and save it in a file.

Starting from the active Galaxy Configuration Model:

1. Press the ENGAGE button so that the model becomes DISENGAGED. The
button should turn from red to white, and its appearance should be popped
outward. When disengaged, all CPU components in the display turn red as
an indication that they are no longer engaged. Do not panic, they have not
been shut down.

2. Alter the CPU assignments by dragging and dropping individual CPUs onto
the instances on which you want to assign them.

3. When finished, you can either reengage the model or save the model in a file
for later use. Whenever you reengage a model, regardless of whether the
model was derived from the active model or from a file-based model, the GCU
compares the active system configuration with the configuration proposed by
the model. It then provides a summary of management actions that would
need to be performed to reassign the system to the new model. If the user
approves of the actions, the GCU commences with execution of the required
management actions and the resulting model is displayed as the active and
engaged model.

The reason for creating offline models is to allow significant configuration changes
to be automated. For example, you can create models representing the desired
Galaxy configuration at different times and then engage the models interactively
by following this procedure.

12.1.2 Observation

The GCU can display the single active Galaxy configuration model, or any number
of offline Galaxy configuration models. Each loaded model appears as an item
in the Model menu on the toolbar. You can switch between models by clicking
the desired menu item.

The active model is always named GLX$ACTIVE.GCM. When the active model is
first loaded, a file by this name exists briefly as the system verifies the model with
the system hardware.

When a model is visible, you can zoom, pan, or slide the display as needed to view
Galaxy components. Use the buttons on the left side of the toolbar to control the
zoom functions.

The zoom functions include:

Function Description

Galactic zoom Zoom to fit the entire component hierarchy into observation
window.

Zoom 1:1 Zoom to the component normal scale.

Zoom to region Zoom to a selected region of the display.

Zoom in Zoom in by 10 percent.

Zoom out Zoom out by 10 percent.

Panning is accomplished by using the vertical and horizontal scrollbars. Sliding is
done by pressing and holding the middle mouse button and dragging (sliding) the
cursor and the image.

OpenVMS Galaxy Configuration Utility 12–3

12.1.2.1 Layout Management

The Automatic Layout feature manages the component layout. If you ever need
to refresh the layout while in Automatic Layout mode, select the root (topmost)
component.

To alter the current layout, select Manual Layout from the Windows menu. In
Manual Layout Mode, you can drag and drop components however you like to
generate a pleasing structure. Because each component is free from automatic
layout constraints, you may need to invest some time in positioning each
component, possibly on each of the charts. To make things simpler, you can click
the right mouse button on any component and select Layout Subtree to provide
automatic layout assistance below that point in the hierarchy.

When you are satisfied with the layout, you must save the current model in a file
to retain the manual layout information. The custom layout is used when the
model is open. Note that if you select Auto Layout mode, your manual layout is
lost for the in-memory model. Also, in order for CPU components to reassign in a
visually effective manner, they must perform subtree layout operations below the
instance level. For this reason, it is best to limit any manual layout operations to
the instance and community levels of the component hierarchy.

12.1.2.2 OpenVMS Galaxy Charts

The GCU provides six distinct subsets of the model, known as charts. The six
charts include:

Chart Name Shows

Logical Structure Dynamic resource assignments

Physical Structure Nonvolatile hardware relationships

CPU Assignment Simplified view of CPU assignments

Memory Assignment Memory subsystem components

IOP Assignment I/O module relationships

Failover Targets Processor failover assignments

These charts result from enabling or disabling the display of various component
types to provide views of sensible subsets of components.

Specific charts may offer functionality that can be provided only for that chart
type. For example, reassignment of CPUs requires that the instance components
be visible. Because instances are not visible in the Physical Structure or Memory
Assignment charts, you can reassign CPUs only in the Logical Structure and CPU
Assignment charts.

For more information about charts, see Section 12.4.

12.1.3 Interaction

When viewing the active Galaxy configuration model, you can interact directly
with the system components. For example, to reassign a CPU from one instance
to another, you can drag and drop a CPU onto the desired instance. The GCU
validates the operation and execute an external command action to make the
configuration change. Interacting with a model that is not engaged is simply a
drawing operation on the offline model, and it has no impact on the running system.

12–4 OpenVMS Galaxy Configuration Utility

While interacting with Galaxy components, the GCU applies built-in and
user-defined rules that prevent misconfiguration and improper management
actions. For example, you cannot reassign primary CPUs, and you cannot reassign
a CPU to any component other than a Galaxy instance. Either operation will result
in an error message on the status bar, and the model will return to its proper
configuration. If the attempted operation violates one of the configuration rules,
the error message, displayed in red on the status bar, describes the rule that failed.

You can view details for any selected component by clicking the right mouse button
and either selecting the Parameters item from the pop-up menu or by selecting
Parameters from the Components menu on the main toolbar.

The GCU can shut down or reboot one or more Galaxy instances using the
Shutdown or Reboot items on the Galaxy menu. You can enter the various
shutdown or reboot parameters can be entered in the Shutdown dialog box. Be
sure to specify the CLUSTER_SHUTDOWN option to fully shut down clustered
Galaxy instances. The Shutdown dialog box allows you to select any combination
of instances, or all instances. The GCU is smart enough to shut down its owner
instance last.

12.2 Managing an OpenVMS Galaxy with the GCU

Your ability to manage a Galaxy system using the GCU depends on the capabilities
of each instance involved in a management operation.

The GCU can be run from any instance in the Galaxy. However, the Galaxy
Software Architecture implements a push-model for resource reassignment. This
means that, in order to reassign a processor, you must execute the reassign
command function on the instance that currently owns the processor. The GCU is
aware of this requirement, and attempts to use one or more communications paths
to send the reassignment request to the owner instance. DCL is not inherently
aware of this requirement; therefore, if you use DCL to reassign resources, you
need to use SYSMAN or a separately logged-in terminal to enter the commands
on the owner instance.

The GCU favors using SYSMAN, and its underlying SMI_Server processes, to
provide command paths to the other instances in the Galaxy. However, the
SMI_Server requires that the instances be in a cluster so that the command
environment falls within a common security domain. However, Galaxy instances
might not be clustered.

If the system cannot provide a suitable command path for the SMI_Server to use,
the GCU attempts to use DECnet task-to-task communications. This requires that
the participating instances be running DECnet, and that each participating Galaxy
instance have a proxy set up for the SYSTEM account.

12.2.1 Independent Instances

You can define a Galaxy system so that one or more instances are not members of
the Galaxy sharing community. These are known as independent instances, and
they are visible to the GCU.

These independent instances can still participate in CPU reassignment. They
cannot utilize shared memory or related services.

12.2.2 Isolated Instances

It is possible for an instance to not be clustered, have no proxy account established,
and not have DECnet capability. These are known as isolated instances. They are

OpenVMS Galaxy Configuration Utility 12–5

visible to the GCU, and you can reassign CPUs to them. The only way to reassign
resources from an isolated instance is from the console of the isolated instance.

12.2.3 Required PROXY Access

When the GCU needs to execute a management action, it always attempts to use
the SYSMAN utility first. SYSMAN requires that the involved instances be in
the same cluster. If this is not the case, the GCU next attempts to use DECnet
task-to-task communications. For this to work, the involved instances must each
have an Ethernet device, DECnet capability, and suitable proxy access on the
target instance.

For example, consider a two-instance configuration that is not clustered. If
instance 0 were running the GCU and the user attempts to reassign a CPU
from instance 1 to instance 0, the actual reassignment command must be
executed on instance 1. To do this, the GCU’s action procedures in the file
SYS$MANAGER:GCU$ACTIONS.COM attempts to establish a DECnet
task-to-task connection to the SYSTEM account on instance 1. This requires
that instance 1 has granted proxy access to the SYSTEM account of instance 0.
Using the established connection, the action procedure on instance 0 passes its
parameters to the equivalent action procedure on instance 1, which now treats the
operation as a local operation.

The GCU action procedures assume that they are used by the system manager.
Therefore, in the action procedure file SYS$MANAGER:GCU$ACTIONS.COM,
the SYSTEM account is used. To grant access to the opposite instances SYSTEM
account, the proxy must be set up on instance 1.

To establish proxy access:

1. Enter the following commands at the DCL prompt:

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE

2. If proxy processing is not yet enabled, enable it by entering the following
commands:

UAF> CREATE/PROXY
UAF> ADD/PROXY instance::SYSTEM SYSTEM
UAF> EXIT

Replace instance with the name of the instance to which you are granting access.
Perform these steps for each of the instances you want to manage from the instance
on which you run the GCU. For example, in a typical two-instance Galaxy, if you
run the GCU only on instance 0, then you need to add proxy access only on instance
1 for instance 0. If you intend to run the GCU on instance 1 also, then you need to
add proxy access on instance 0 for instance 1. In three-instance Galaxy systems,
you may need to add proxy access for each combination of instances you want to
control. For this reason, always run the GCU from instance 0.

You are not required to use the SYSTEM account. To change the account, you need
to edit SYS$MANAGER:GCU$ACTIONS.COM on each involved instance. Locate
the line that establishes the task-to-task connection, and replace the SYSTEM
account name with one of your choosing.

Note that the selected account must have OPER, SYSPRV, and CMKRNL
privileges. You also need to add the necessary proxy access to your instances for
this account.

12–6 OpenVMS Galaxy Configuration Utility

12.3 Galaxy Configuration Models

The GCU is a fully programmable display engine. It uses a set of rules to learn the
desired characteristics and interactive behaviors of the system components. Using
this specialized configuration knowledge, the GCU assembles models that represent
the relationships among system components. The GCU obtains information about
the current system structure by parsing a configuration structure built by the
console firmware. This structure, called the Galaxy Configuration File, is stored in
memory and is updated as needed by firmware and by OpenVMS executive routines
to ensure that it accurately reflects the current system configuration and state.

The GCU converts and extends the binary representation of the configuration file
into a simple ASCII representation, which it can store in a file as an offline model.
The GCU can later reload an offline model and alter the system configuration to
match the model. Whether you are viewing the active model or an offline model,
you can save the current configuration as an offline Galaxy Configuration Model
(.GCM) file.

To make an offline model drive the current system configuration, the model must be
loaded and engaged. To engage a model, click the Engage button. The GCU scans
the current configuration file, compare it against the model, and create a list of any
management actions that are required to engage the model. The GCU presents
this list to you for final confirmation. If you approve, the GCU executes the actions,
and the model is engaged to reflect the current system configuration and state.

When you disengage a model, the GCU immediately marks the CPUs and instances
as off line. You can then arrange the model however you like, and either save the
model, or reengage the model. In typical practice, you are likely to have a small
number of models that have proved to be useful for your business operations. These
can be engaged by a system manager or a suitably privileged user, or through DCL
command procedures.

12.3.1 Active Model

The GCU maintains a single active model. This model is always derived from the
in-memory configuration file. The configuration file can be from a Galaxy console
or from a file-based, single-instance Galaxy on any Alpha system. Regardless of its
source, console callbacks maintain the integrity of the file.

The GCU utilizes Galaxy event services to determine when a configuration change
has occurred. When a change occurs, the GCU parses the configuration file and
updates its active model to reflect the current system. The active model is not
saved to a file unless you choose to save it as an offline model. Typically, the active
model becomes the basis for creating additional models. When creating models,
it is generally best to do so online so that you are sure your offline models can
engage when they are needed.

12.3.2 Offline Models

The GCU can load any number of offline Galaxy configuration models and freely
switch among them, assuming they were created for the specific system hardware.
The model representation is a simple ASCII data definition format.

You should never need to edit a model file in its ASCII form. The GCU models
and ruleset adhere to a simple proprietary language known as the Galaxy
Configuration Language (GCL). This language continues to evolve as needed to
represent new Galaxy innovations. Note this fact if you decide to explore the model
and ruleset files directly. If you accidentally corrupt a model, you can always

OpenVMS Galaxy Configuration Utility 12–7

generate another. If you corrupt the ruleset, you may need to download another
from the OpenVMS Galaxy web site.

12.3.2.1 Example: Creating an Offline Model

To create an offline Galaxy configuration model:

1. Boot your Galaxy system, log in to the system account, and run the GCU.

2. By default, the GCU displays the active model.

3. Disengage the active model by clicking the Engage button (it toggles).

4. Assuming your system has a few secondary CPUs, drag and drop some of the
CPUs to a different Galaxy instance.

5. Save the model by selecting Save Model from the Model menu. Give the model
a suitable name with a .GCM extension. It is useful to give the model a name
that denotes the CPU assignments; for example, G1x7.GCM for a system in
which instance 0 has 1 CPU and instance 1 has 7 CPUs, or G4x4.GCM for a
system with 4 CPUs on each of its two instances. This naming scheme is
optional, but be sure to give the file the proper .GCM extension.

You can create and save as many variations of the model as you like.

To engage an offline model:

1. Run the GCU.

2. By default, the GCU displays the active model. You can close the active model
or just leave it.

3. Load the desired model by selecting Open Model from the Model menu.

4. Locate and select the desired model and click OK. The model is loaded and
displayed in an offline, disengaged state.

5. Click the Engage button to reengage the model.

6. The GCU displays any management operations required to engage the model.
If you approve of the actions, click OK. The GCU performs the management
actions, and the model is displayed as active and engaged.

12.4 Using the GCU Charts

The GCU contains a considerable amount of configuration data and can grow quite
large for complex Galaxy configurations. If the GCU displayed all the information
it has about the system, the display would become unreasonably complex. To avoid
this problem, the GCU provides Galaxy charts. Charts are a set of masks that
control the visibility of the various components, devices, and interconnections.
The entire component hierarchy is present, but only the components specified
by the selected chart are visible. Selecting a different chart alters the visibility
of component subsets.

By default, the GCU provides five preconfigured charts:

• Physical Structure chart (Section Section 12.4.2)

• Logical Structure Chart (Section Section 12.4.3)

• Memory Assignment Chart (Section Section 12.4.4)

• IOP Assignment Chart (Section Section 12.4.6)

• Failover Target Chart (Section Section 12.4.7)

12–8 OpenVMS Galaxy Configuration Utility

Each chart is designed to show a specific component relationship. Some GCU
command operations can be performed only within specific charts. For example,
you cannot reassign CPUs from within the Physical Structure chart. The Physical
Structure chart does not show the Galaxy instance components; you would have no
target to drag and drop a CPU on. Similarly, you cannot perform a hot-swap inquiry
operation if you are displaying the Logical Structure chart. Device hot-swapping is
a physical task that cannot be represented in the logical chart. Because you can
modify the charts, the GCU does not restrict its menus and command operations
to specific chart selections. In some cases, the GCU displays an informational
message to help you select an appropriate chart.

12.4.1 Component Identification and Display Properties

Each component has a unique identifier. This identifier can be a simple sequential
number, such as with CPU IDs, a physical backplane slot number, as with I/O
adapters, or a physical address, as with memory devices. Each component type
is also assigned a shape and color by the GCU. Where possible, the GCU further
distinguishes each component using supplementary information it gathers from
the running system.

The display properties of each component are assigned within the Galaxy
Configuration Ruleset (SYS$MANAGER:GALAXY.GCR). Do not edit this file,
except to customize certain display properties, such as window color or display
text style.

You can also customize the text that gets displayed about each component.
Each component type has a set of statements in the ruleset that determine its
appearance, data content, and interaction.

One useful feature is the ability to select which text is displayed in each component
type on the screen. The device declaration in the ruleset allows you to specify the
text and parameters, which make up the display text statement. A subset of this
display text is displayed whenever the zoom scale factor does not allow the full text
to be displayed. This subset is known as the mnemonic. The mnemonic can be
altered to include any text and parameters.

12.4.2 Physical Structure Chart

The Physical Structure chart describes the physical hardware in the system. The
large rectangular component at the top, or root, of the chart represents the physical
system cabinet itself. Typically, below the root, you find physical components such
as modules, slots, arrays, adapters, and so on. The type of components presented
and the depth of the component hierarchy is directly dependent on the level of
support provided by the console firmware for each hardware platform. If you are
viewing a single-instance Galaxy on any Alpha system, then only a small subset of
components can be displayed.

As a general rule, the console firmware presents components only down to the level
of configurable devices, typically to the first-level I/O adapter or slightly beyond. It
is not a goal of the GCU or of the Galaxy console firmware to map every device, but
rather those that are of interest to Galaxy configuration management.

The Physical Structure chart is useful for viewing the entire collection of
components in the system; however, it does not display any logical partitioning of
the components.

OpenVMS Galaxy Configuration Utility 12–9

In the Physical Structure chart you can:

• Examine the parameters of any system component.

• Perform a hot-swap inquiry to determine how to isolate a component for repairs.

• Apply an Optimization Overlay to determine whether the hardware platform
has specific optimizations that ensures the best performance. For example,
multiple-CPU modules may run best if all CPUs residing on a common module
are assigned to the same Galaxy instance.

• Shut down or reboot the Galaxy or specific Galaxy instances.

12.4.2.1 Hardware Root

The topmost component in the Physical Structure chart is known as the hardware
root (HW_Root). Every Galaxy system has a single hardware root. It is useful to
think of this as the physical floorplan of the machine. If a physical device has
no specific lower place in the component hierarchy, it appears as a child of the
hardware root. A component that is a child can be assigned to other devices in the
hierarchy when the machine is partitioned or logically defined.

__________________________ Tip _________________________

Clicking the root instance of any chart performs an auto-layout
operation if the Auto Layout mode is set.

12.4.2.2 Ownership Overlay

Choose Ownership Overlay from the Windows menu to display the initial owner
relationships for the various components. These relationships indicate the instance
that owns the component after a power cycle. Once a system has been booted,
migratable components may change owners dynamically. To alter the initial
ownership, the console environment variables must be changed.

The ownership overlay has no effect on the Physical Structure chart or the Failover
Target chart.

12.4.3 Logical Structure Chart

The Logical Structure chart displays Galaxy communities and instances and is the
best illustration of the relationships that form the Galaxy. Below these components
are the various devices they currently own. Ownership is an important distinction
between the Logical Structure chart and Physical Structure chart. In a Galaxy,
resources that can be partitioned or dynamically reconfigured have two distinct
owners.

The owner describes where the device turns up after a system power-up. This value
is determined by the console firmware during bus-probing procedures and through
interpretation of the Galaxy environment variables. The owner values are stored
in console nonvolatile memory so that they can be restored after a power cycle.

The CURRENT_OWNER describes the owner of a device at a particular moment
in time. For example, a CPU is free to reassign among instances. As it does, its
CURRENT_OWNER value is modified, but its owner value remains whatever it
was set to by the LP_CPU_MASK# environment variables.

The Logical Structure chart illustrates the CURRENT_OWNER relationships.
To view the nonvolatile owner relationships, select Ownership Overlay from the
Window menu.

12–10 OpenVMS Galaxy Configuration Utility

The following sections describe the components of the Logical Structure chart.

12.4.3.1 Software Root

The topmost component in the Logical Structure chart is known as the software
root (SW_Root). Every Galaxy system has a single software root. If a physical
device has no specific owner, it appears as a child of the software root. A component
that has a child can be assigned to other devices in the hierarchy when the machine
is logically defined.

__________________________ Tip _________________________

Clicking the root instance of any chart performs an auto-layout
operation if the Auto Layout mode is set.

12.4.3.2 Unassigned Resources

You can configure Galaxy partitions without assigning all devices to a partition,
or you can define but not initialize one or more partitions. In either case, some
hardware may be unassigned when the system boots.

The console firmware handles unassigned resources in the following manner:

• Unassigned CPUs are assigned to partition 0.

• Unassigned memory is ignored.

Devices that remain unassigned after the system boots appear to be assigned to the
software root component and may not be accessible.

12.4.3.3 Community Resources

Resources such as shared memory can be accessed by all instances within a sharing
community. Therefore, for shared memory, the community itself is considered
the owner.

12.4.3.4 Instance Resources

Resources that are currently or permanently owned by a specific instance are
displayed as children of the instance component.

12.4.4 Memory Assignment Chart

The Memory Assignment chart illustrates the partitioning and assignment
of memory fragments among the Galaxy instances. This chart displays both
hardware components (arrays, controllers, and so on) and software components
(memory fragments).

Current Galaxy firmware and operating system software does not support dynamic
reconfiguration of memory. Therefore, the Memory Assignment chart reflects the
way the memory address space has been partitioned by the console among the
Galaxy instances. This information can be useful for debugging system applications
or for studying possible configuration changes.

The following sections discuss memory fragments.

12.4.4.1 Console Fragments

The console requires one or more small fragments of memory. Typically, a console
allocates approximately 2 MB of memory in the low address range of each partition.

OpenVMS Galaxy Configuration Utility 12–11

This varies by hardware platform and firmware revision. Additionally, some
consoles allocate a small fragment in high address space for each partition to store
memory bitmaps. The console firmware may need to create additional fragments
to enforce proper memory alignment.

12.4.4.2 Private Fragments

Each Galaxy instance is required to have at least 64 MB of private memory
(including the console fragments) to boot OpenVMS. This memory can consist of
a single fragment, or the console firmware may need to create additional private
fragments to enforce proper memory alignment.

12.4.4.3 Shared Memory Fragments

To create an OpenVMS Galaxy, a minimum of 8 MB of shared memory must be
allocated. This means the minimum memory requirement for an OpenVMS Galaxy
is actually 72 MB (64 MB for a single instance and 8 MB for shared memory).

12.4.5 CPU Assignment Chart

The CPU Assignment chart displays the minimal number of components required
to reassign CPUs among the Galaxy instances. This chart can be useful for working
with very large Galaxy configurations.

12.4.5.1 Primary CPU

Each primary CPU is displayed as an oval rather than a hexagon. This is a
reminder that primary CPUs cannot be reassigned or stopped. If you attempt to
drag and drop a primary CPU, the GCU displays an error message in its status bar
and does not allow the operation to occur.

12.4.5.2 Secondary CPUs

Secondary CPUs are displayed as hexagons. Secondary CPUs can be reassigned
among instances in either the Logical Structure chart or the CPU Assignment
chart. Drag and drop the CPU on the desired instance. If you drop a CPU on the
same instance that currently owns it, the CPU stops and restarts.

12.4.5.3 Fast Path and Affinitized CPUs

If you reassign a CPU that has a Fast Path device currently affinitized to the CPU,
the affinity device moves to another CPU and the CPU reassignment succeeds. If a
CPU has a current process affinity assignment, the CPU cannot be reassigned.

For more information about using OpenVMS Fast Path features, see the OpenVMS
I/O User’s Reference Manual.

12.4.5.4 Lost CPUs

You can reassign secondary CPUs to instances that are not yet booted (partitions).

Similarly, you can reassign a CPU to an instance that is not configured as a
member of the Galaxy sharing community. In this case, you can push the CPU
away from its current owner instance, but you cannot get it back unless you log in
to the independent instance (a separate security domain) and reassign the CPU
back to the current owner.

12–12 OpenVMS Galaxy Configuration Utility

Regardless of whether an instance is part of the Galaxy sharing community or is an
independent instance, it is still present in the Galaxy configuration file; therefore,
the GCU is still able to display it.

12.4.6 IOP Assignment Chart

The IOP Assignment chart displays the current relationship between I/O modules
and the Galaxy instances. Note that, depending on what type of hardware platform
is being used, a single-instance Galaxy on any Alpha system may not show any I/O
modules in this display.

12.4.7 Failover Target Chart

The Failover Target chart shows how each processor automatically fails over to
other instances in the event of a shutdown or failure. Additionally, this chart
illustrates the state of each CPU’s autostart flag.

For each instance, a set of failover objects are shown, representing the full set
of potential CPUs. By default, no failover relationships are established and all
autostart flags are set.

To establish automatic failover of specific CPUs, drag and drop the desired failover
object to the instance you want the associated CPU to target. To set failover
relationships for all CPUs owned by an instance, drag and drop the instance object
on top of the instance you want the CPUs to target.

To clear individual failover targets, drag and drop a failover object back to its
owner instance. To clear all failover relationships, right-click on the instance object
to display the Parameters &Commands dialog box, click on the Commands button,
click the “Clear ALL failover targets?”, button and then click OK.

By default, whenever a failover operation occurs, the CPUs automatically start
once they arrive in the target instance. You can control this autostart function
using the autostart commands found in the Parameters &Commands dialog box for
each failover object, or each instance object. The Failover Target chart displays the
state of the autostart flag by displaying the failover objects in green if autostart is
set, and red if autostart is clear.

Please note the following restrictions in the current implementation of failover and
autostart management:

• The failover and autostart settings are not preserved across system boots.
Therefore, you need to reestablish the model whenever the system reboots. To
do this, invoke a previously saved configuration model, either by manually
restoring the desired model or by using a command procedure during system
startup.

• The GCU currently is not capable of determining the autostart and failover
relationships of instances other than the one the GCU is running on, unless
the instances are clustered.

• The GCU currently does not respond to changes in failover or autostart state
that are made from another executing copy of the GCU or from DCL commands.
If this state is altered, the GCU refreshes its display only if the active model
is closed and then reopened.

12.5 Viewing Component Parameters

Each component has a set of parameters that can be displayed and, in some cases,
altered. To display a component’s parameters, position the cursor on the desired

OpenVMS Galaxy Configuration Utility 12–13

component, click the right mouse button, and select the Parameters item from the
pop-up menu entry. Alternately, you can select a component and then select the
Parameters item from the Components menu.

Where parameters are subject to unit conversion, changing the display unit updates
the display and any currently visible parameter dialog boxes. Other parameters
represent a snapshot of the system component and are not dynamically updated. If
these parameters change, you must close and then reopen the Parameters dialog
box to see the updated values.

12.6 Executing Component Commands
A component’s Parameters dialog box can also contain a command page. If so, you
can access the commands by clicking on the Commands button at the top of the
dialog box. Most of the commands are executed by clicking on their toggle buttons
and then clicking the OK or Apply buttons. Other commands may require that you
enter information, or select values from a list or option menu. Note that if you
select several commands, they are executed in a top-down order. Be sure to choose
command sequences that are logical.

12.7 Customizing GCU Menus
System managers can extend and customize the GCU menus and menu entries
by creating a file named SYS$MANAGER:GCU$CUSTOM.GCR. The file must
contain only menu statements formatted as shown in the following examples. The
GCU$CUSTOM.GCR file is optional. It is preserved during operating system
upgrades.

FORMAT EXAMPLE:

MENU "Menu-Name" "Entry-Name" Procedure-type "DCL-command"
* Menu-Name - A quoted string representing the name of the

pulldown menu to add or extend.

* Entry-Name - A quoted string representing the name of the
menu entry to add.

* Procedure-type - A keyword describing the type of procedure
to invoke when the menu entry is selected.

Valid Procedure-type keywords include:

COMMAND_PROCEDURE - Executes a DCL command or command file.
SUBPROC_PROCEDURE - Executes a DCL command in subprocess context.

* DCL-command - A quoted string containing a DCL command statement
consisting of an individual command or invokation
of a command procedure.

To create a procedure to run on other instances, write a command procedure
that uses SYSMAN or task-to-task methods similar to what the GCU uses in
SYS$MANAGER:GCU$ACTIONS.COM. You can extend GCU$ACTIONS.COM,
but this file is replaced during operating system upgrades and is subject to change.

EXAMPLE MENU STATEMENTS (place in SYS$MANAGER:GCU$CUSTOM.GCR):

// GCU$CUSTOM.GCR - GCU menu customizations
// Note that the file must end with the END-OF-FILE statement.
//
MENU "Tools" "Availability Manager" SUBPROC_PROCEDURE "AVAIL/GROUP=DECamds"
MENU "Tools" "Create DECterm" COMMAND_PROCEDURE "CREATE/TERM/DETACH"

12–14 OpenVMS Galaxy Configuration Utility

MENU "DCL" "Show CPU" COMMAND_PROCEDURE "SHOW CPU"
MENU "DCL" "Show Memory" COMMAND_PROCEDURE "SHOW MEMORY"
MENU "DCL" "Show System" COMMAND_PROCEDURE "SHOW SYSTEM"
MENU "DCL" "Show Cluster" COMMAND_PROCEDURE "SHOW CLUSTER"
END-OF-FILE

12.8 Monitoring an OpenVMS Galaxy with DECamds
The DECamds availability manager software provides a valuable real-time view
of the Galaxy system. DECamds can monitor all Galaxy instances from a single
workstation or PC anywhere on the local area network. DECamds utilizes a
custom OpenVMS driver (RMDRIVER) that periodically gathers availability data
from the system. This information is returned to the DECamds client application
using a low-level Ethernet protocol.

The client application provides numerous views and graphs of the system’s
availability characteristics. Additionally, when DECamds detects one of numerous
known conditions, it notifies the user and offers a set of solutions (called fixes) that
can be applied to resolve the condition.

Every OpenVMS system comes with the DECamds Data Collector (RMDRIVER)
installed. To enable the collector, you must execute its startup procedure inside
SYSTARTUP_VMS.COM or manually on each Galaxy instance you want to
monitor. Enter the following commands to start or stop the data collector:

$ @SYS$STARTUP:AMDS$STARTUP START

or:

$ @SYS$STARTUP:AMDS$STARTUP STOP

Before starting the collector, you need to specify a group name for your Galaxy.
Do so by editing the SYS$COMMON:[AMDS]AMDS$LOGICALS.COM file. This
file includes a statement for declaring a group name. Choose any unique name,
making sure this file on each Galaxy instance contains the same group name.

When using DECamds, OpenVMS Engineering finds it useful to display the
System Overview window, the Event window, and a CPU Summary window for
each Galaxy instance. There are a number of additional views you can monitor
depending on your specific interests. For more information about DECamds, see
the DECamds Users Guide.

12.9 Running the CPU Load Balancer Program
The OpenVMS Galaxy CPU Load Balancer program is a privileged application that
dynamically reassigns CPU resources among instances in an OpenVMS Galaxy.

For information about how to run this program from the GCU, see Appendix A.

12.10 Creating an Instance
The current implementation of the Galaxy Software Architecture for OpenVMS
requires that you predefine the Galaxy instances you intend to use. You can do this
by using console environment variables. See the appropriate sections of this guide
for more details about Galaxy environment variables.

12.11 Dissolving an Instance
The only way to effectively dissolve a Galaxy instance is to shut it down, reassign
its resources using console environment variables, and, if necessary, reboot any
instances that acquire new resources.

OpenVMS Galaxy Configuration Utility 12–15

12.12 Shutdown and Reboot Cycles
Resources such as CPUs can be dynamically reassigned once the involved instances
are booted. To reassign statically assigned resources, such as I/O modules, you
must shut down and reboot the involved instances after executing the appropriate
console commands.

12.13 Online Versus Offline Models
The GCU allows you to display and interact with the active (online) or inactive
(offline) Galaxy configuration models. When the configuration display represents a
model of the active system, the GCU displays the state of the CPUs and instances
using color and text. When the configuration model is engaged in this manner, you
can interact with the active system using drag-and-drop procedures. The formal
description for this mode of operation is interacting with the engaged, online model.

GCU users can also interact with any number of disengaged, or offline, models.
Offline models can be saved to or loaded from files. An offline model can also be
derived from the active online model by clicking the Engage button to be disengaged
when the active online model is displayed. In addition to the visual state of the
Engage button, the GCU also indicates the online versus offline characteristic
of the CPUs and instances by using color and text. Any drag-and-drop actions
directed at an offline model are interpreted as simple editing functions. They
change the internal structure of the model but do not affect the active system.

When an offline model is engaged, the GCU compares the structure of the model
with that of the active system. If they agree, the offline model is engaged and
its new online state is indicated with color and text. If they do not agree, the
GCU determines what management actions would be required to alter the active
system to match the proposed model. A list of the resulting management actions is
presented to the user, and the user is asked whether they would like to execute the
action list. If the user disapproves, the model remains off line and disengaged. If
the user approves, the GCU executes the management actions and the resulting
model is displayed as on line and engaged.

12.14 GCU System Messages
The following system messages are displayed by the GCU when an error occurs.

%GCU-E-SUBPROCHALT, Subprocess halted; See GCU.LOG.

The GCU has launched a user-defined subprocess which has terminated
with error status. Details may be found in the file GCU.LOG.

%GCU-S-SUBPROCTERM, Subprocess terminated

The GCU has launched a user-defined subprocess which has terminated.

%GCU-I-SYNCMODE, XSynchronize activated

The GCU has been invoked with X-windows synchronous mode enabled.
This is a development mode which is not generally used.

%GCU-W-NOCPU, Unable to locate CPU

A migration action was initiated which involved an unknown CPU. This
can result from engaging a model which contains invalid CPU identifiers
for the current system.

%GCU-E-NORULESET, Ruleset not found:

The GCU was unable to locate the Galaxy Configuration Ruleset in
SYS$MANAGER:GALAXY.GCR. New versions of this file can be downloaded

12–16 OpenVMS Galaxy Configuration Utility

from the OpenVMS Galaxy web page.

%GCU-E-NOMODEL, Galaxy configuration model not found:

The specified Galaxy Configuration Model was not found. Check your
command line model file specification.

%GCU-W-XTOOLKIT, X-Toolkit Warning:

The GCU has intercepted an X-Toolkit warning. You may or may not be
able to continue, depending on the type of warning.

%GCU-S-ENGAGED, New Galaxy configuration model engaged

The GCU has successfully engaged a new Galaxy Configuration Model.

%GCU-E-DISENGAGED, Unable to engage Galaxy configuration model

The GCU has failed to engage a new Galaxy Configuration Model. This
can happen when a specified model is invalid for the current system, or
when other system activities prevent the requested resource assignments.

%GCU-E-NODECW, DECwindows is not installed.

The current system does not have the required DECwindows support.

%GCU-E-HELPERROR Help subsystem error.

The DECwindows Help system (Bookreader) encountered an error.

%GCU-E-TOPICERROR Help topic not found.

The DECwindows Help system could not locate the specified topic.

%GCU-E-INDEXERROR Help index not found.

The DECwindows Help system could not locate the specified index.

%GCU-E-UNKNOWN_COMPONENT: {name}

The current model contains reference to an unknown component. This
can result from model or ruleset corruption. Search for the named
component in the ruleset SYS$MANAGER:GALAXY.GCR. If it is not found,
download a new one from the OpenVMS Galaxy web site. If the problem
persists, delete and recreate the offending model.

%GCU-I-UNASSIGNED_HW: Found unassigned {component}"

The GCU has detected a hardware component which is not currently
assigned to any Galaxy instance. This may result from intentionally
leaving unassigned resources. Note the message and continue or
assign the hardware component from the primary Galaxy console and
reboot.

%GCU-E-UNKNOWN_KEYWORD: {word}

The GCU has parsed an unknown keyword in the current model file. This
can only result from model file format corruption. Delete and
recreate the offending model.

%GCU-E-NOPARAM: Display field {field name}

The GCU has parsed an incomplete component statement in the current
model. This can only result from model file format corruption.
Delete and recreate the offending model.

%GCU-E-NOEDITFIELD: No editable field in display.

The GCU has attempted to edit a component parameter which is undefined.
This can only result from model file format corruption. Delete and

OpenVMS Galaxy Configuration Utility 12–17

recreate the offending model.

%GCU-E-UNDEFTYPE, Undefined Parameter Data Type: {type}

The GCU has parsed an unknown data type in a model component parameter.
This can result from model file format corruption or incompatible
ruleset for the current model. Search the ruleset SYS$MANAGER:GALAXY.GCR
for the offending datatype. If not found, download a more recent
ruleset from the OpenVMS Galaxy web site. If found, delete and
recreate the offending model.

%GCU-E-INVALIDMODEL, Invalid model structure in: {model file}

The GCU attempted to load an invalid model file. Delete and recreate
the offending model.

%GCU-F-TERMINATE Unexpected termination.

The GCU encountered a fatal DECwindows event.

%GCU-E-GCTLOOP: Configuration Tree Parser Loop

The GCU has attempted to parse a corrupt configuration tree. This
may be a result of console firmware or operating system fault.

%GCU-E-INVALIDNODE: Invalid node in Configuration Tree

The GCU has parsed an invalid structure within the configuration tree.
This can only result from configuration tree corruption or revision
mismatch between the ruleset and console firmware.

%GCU-W-UNKNOWNBUS: Unknown BUS subtype: {type}

The GCU has parsed an unknown bus type in the current configuration
tree. This can only result from revision mismatch between the
ruleset and console firmware.

%GCU-W-UNKNOWNCTRL, Unknown Controller type: {type}

The GCU has parsed an unknown controller type in the current configuration
tree. This can only result from revision mismatch between the
ruleset and console firmware.

%GCU-W-UNKNOWNCOMP, Unknown component type: {type}

The GCU has parsed an unknown component type in the current configuration
tree. This can only result from revision mismatch between the
ruleset and console firmware.

%GCU-E-NOIFUNCTION, Unknown internal function

The user has modified the ruleset file and specified an unknown
internal GCU function. Correct the ruleset or download a new one
from the OpenVMS Galaxy web page.

%GCU-E-NOEFUNCTION, Missing external function

The user has modified the ruleset file and specified an unknown
external function. Correct the ruleset or download a new one
from the OpenVMS Galaxy web page.

%GCU-E-NOCFUNCTION, Missing command function

The user has modified the ruleset file and specified an unknown
command procedure. Correct the ruleset or download a new one
from the OpenVMS Galaxy web page.

%GCU-E-UNKNOWN_COMPONENT: {component}

The GCU has parsed an unknown component. This can result from

12–18 OpenVMS Galaxy Configuration Utility

ruleset corruption or revision mismatch between the ruleset and
console firmware.

%GCU-E-BADPROP, Invalid ruleset DEVICE property

The GCU has parsed an invalid ruleset component statement. This can
only result from ruleset corruption. Download a new one from the
OpenVMS Galaxy web page.

%GCU-E-BADPROP, Invalid ruleset CHART property

The GCU has parsed an invalid chart statement. This can
only result from ruleset corruption. Download a new one from the
OpenVMS Galaxy web page.

%GCU-E-BADPROP, Invalid ruleset INTERCONNECT property

The GCU has parsed an invalid ruleset interconnect statement. This can
only result from ruleset corruption. Download a new one from the
OpenVMS Galaxy web page.

%GCU-E-INTERNAL Slot {slot detail}

The GCU has encountered an invalid datatype from a component parameter.
This can result from ruleset or model corruption. Download a new one
from the OpenVMS Galaxy web page. If the problem persists, delete and
recreate the offending model.

%GCU-F-PARSERR, {detail}

The GCU encountered a fatal error while parsing the ruleset. Download
a new one from the OpenVMS Galaxy web page.

%GCU-W-NOLOADFONT: Unable to load font: {font}

The GCU could not locate the specified font on the current system.
A default font will be used instead.

%GCU-W-NOCOLORCELL: Unable to allocate color

The GCU is unable to access a colormap entry. This can result from
a system with limited color support or from having an excessive number
of graphical applications open at the same time.

GCU-E-NOGALAXY, This system is not configured as a Galaxy.

Description:

The user has issued the CONFIGURE GALAXY/ENGAGE command on a
system which is not configured for Galaxy operation.

User Action:

Configure your system for Galaxy operation using the procedures
described in the OpenVMS Galaxy Guide. If you only want to run a
single-instance Galaxy, enter CONFIGURE GALAXY without the
/ENGAGE qualifier and follow the instructions provided by the
Galaxy Configuration Utility.

%GCU-E-ACTIONNOTALPHA GCU actions require OpenVMS Alpha

A GCU user has attempted to invoke a Galaxy configuration operation
on an OpenVMS VAX system.

%GCU-I-ACTIONBEGIN at {time}, on {instance} {mode}

This informational message indicates the start of a configuration
action on the specified Galaxy instance. Note that many actions
require collaboration between command environments on two separate
Galaxy instances, thus, you may encounter two of these messages, one

OpenVMS Galaxy Configuration Utility 12–19

per instance involved in the operation. The mode argument indicates
which instance is local versus remote.

%GCU-S-ACTIONEND at {time}, on {nodename}

This is the normal successful completion message following a Galaxy
configuration action. Note that many actions require collaboration
between command environments on two separate Galaxy instances, thus, you
may encounter two of these messages, one per instance involved in the
operation.

%GCU-S-ACTIONEND, Exiting GCU$ACTIONS on ^Y

Indicates that the user has aborted a Galaxy configuration action
using Control-Y.

%GCU-S-ACTIONEND, Exiting GCU$ACTIONS on error {message}

Indicates that a Galaxy configuration action terminated with error
status as indicated by the message argument.

%GCU-E-ACTIONUNKNOWN no action specified

Indicates that the GCU$ACTIONS.COM procedure was called improperly.
It is possible that the command procedure has been corrupted or is
out of revision for the current system.

%GCU-E-ACTIONNOSIN no source instance name specified

Indicates that the GCU$ACTIONS.COM procedure was called improperly.
It is possible that the command procedure has been corrupted or is
out of revision for the current system.

%GCU-E-ACTIONBAD failed to execute the specfied action

Indicates that a Galaxy configuration action aborted due to an
indeterminate error condition. Review related screen messages and
verify that the necessary proxy accounts have been established.

%GCU-E-INSFPRIVS, Insufficient privileges for attempted operation

An underprivileged user has attempted to perform a Galaxy configuration
action. Typically, these actions are performed from within the system
managers account. OPER and SYSPRV privileges are required.

%GCU-E-NCF network connect to {instance} failed

An error has occurred trying to open a DECnet task-to-task connection
between the current and specified instances. Review related screen
messages and verify that the necessary proxy accounts have been
established.

12–20 OpenVMS Galaxy Configuration Utility

13
Installing the Graphical Configuration

Manager (GCM)

This chapter describes the Compaq Graphical Configuration Manager (GCM) for
OpenVMS that is included in the network kit. This chapter describes how to install
the GCM server and the GCM client from the kit, and contains basic instructions for
establishing a GCM client/server session. Once you have performed the basic GCM
setup, you can get more information about GCM from the GCM client Help menu.

13.1 Overview
The Compaq Graphical Configuration Manager (GCM) for OpenVMS is a portable,
client/server application that provides a visual means of viewing and controlling
the configuration of partitioned AlphaServer systems running OpenVMS. The
GCM client is a Java-based application that can run on any operating system that
supports the Java run-time environment (JDK V1.2.2 or higher) and a TCP/IP
network. A GCM server runs as a detached process on each partitioned OpenVMS
instance on one or more AlphaServer systems. You use GCM to configure and
manage Galaxy systems in much the same way that you use GCU: the difference is
that GCU is a DECwindows Motif application and GCM is a Java-based one.

_________________________ Note _________________________

The GCM client is not supported on Java JDK Version 1.3 or higher at
this time.

All network communication performed by the Compaq OpenVMS Graphical
Configuration Manager uses Secure Socket Layer (SSL). The GCM administration
database is encrypted.

From a GCM client, an OpenVMS system manager can establish a secure
connection to one or more GCM servers, and perform the following functions:

• Display the configuration of partitioned AlphaServers

• Utilize hotswap characteristics of the current hardware platform

• Execute distributed commands among partitioned instances

• Reassign resources among soft-partitioned instances

• View resource-specific characteristics

• Shut down or reboot one or more instances

• Invoke additional management tools

• Create and engage Galaxy configuration models

• View online documentation

An association is a group of OpenVMS instances, each of which has the GCM
server installed and shares a common GCM administration database. By defining
associations, system managers can use a wide range of deployment strategies to
meet their operational needs. For example, you can create hard partitions on a
large system to serve different corporate departments or divisions. Within these

Installing the Graphical Configuration Manager (GCM) 13–1

hard partitions, you can create soft partitions to further segregate individual work
groups or user groups. A complex environment such as this may have many
separate system managers, each responsible for a different set of hard and soft
partitions. In addition, you can define an overall management function with
responsibility for either all or a subset of the partitions. GCM allows you to define
specific associations and authorize specific access privileges to individual users.

In the most simple deployment, a single GCM server runs on the single soft
partition of a single hard partition. Association records in the administration
database identify the hard partition (and its soft partition) as a unique entity that
is to be managed as an individual system.

In the most complex deployment, a GCM server runs on each soft partition within
each hard partition of many different systems (GS series, ES40, 4100, 8xxx).
Association records in the administration database identify the group of systems
that form the combined entity to be managed. When an association consists of
multiple systems and partitions, each GCM server identifies itself to every other
GCM server in the association, thereby establishing a secure communications grid
that allows you to perform advanced distributed management functions.

13.2 Installation Prerequisites

This section lists the software and hardware requirements for installing and
running GCM.

13.2.1 Software Requirements

GCM server:

• OpenVMS Alpha Version 7.2–1H1 or greater

• Compaq TCP/IP Services for OpenVMS (shipped with Compaq OpenVMS)

GCM client:

• For OpenVMS

– OpenVMS Version 7.2 or higher

– TCP/IP Services for OpenVMS (shipped with Compaq OpenVMS)

– Java (JDK Version 1.2.2) Run-Time Environment (installed when you
install the client)

• For the PC

– Windows NT or Windows 2000

– TCP/IP Services for OpenVMS

– Java (JDK Version 1.2.2 or higher) Run-Time Environment

______________________ Note ______________________

The GCM client is not supported on Java JDK Version 1.3 or
greater at this time.

13.2.2 Hardware Requirements

The performance of GCM is affected by the size and configuration of the association.
A larger, more complex association (one that contains many GCM servers) results
in slower network transfers.

13–2 Installing the Graphical Configuration Manager (GCM)

Each machine running a GCM client should have a display of at least 800x600
pixels (SVGA).

Each PC running a GCM client should contain at least 128 MB memory.

13.3 Installation Procedure
This section describes how to install the components of the GCM. Installation
consists of the following steps:

• Installing one GCM server (Section 13.3.2).

• Installing one GCM client (Section 13.3.3).

• Performing GCM server setup tasks to establish a basic configuration,
including authorizing initial user with administrator privilege (Section 13.3.4).

• Running the GCM client (with administrator privilege) to finish configuring the
association (Section 13.3.4).

• Propagating the GCM administration database (Section 13.3.4).

• Authorizing additional users Section Section 13.3.4).

13.3.1 Kits

You can always find the latest versions of the POLYCENTER Software Installation
utility kits for the OpenVMS GCM server and client on the OpenVMS web site,
which is located at:

http://www.openvms.compaq.com

Click on “Products” to find the location of downloadable kits for the OpenVMS
client and server, and the zip file for the Windows client.

GCM is also available on the OpenVMS Alpha Version 7.3–1 Layered Product
CD-ROM, which is shipped along with the operating system.

13.3.2 Installing the GCM Server

The GCM server is preinstalled on OpenVMS Version 7.3–1 and higher versions.
On previous versions of OpenVMS (Version 7.2–1H1 or higher), you can install
the GCM server with the POLYCENTER Software Installation utility kit (see
Section 13.3.1).

Installing the GCM server does the following:

• Installs (or updates) the SYS$COMMON:[SYSEXE]GCM_SERVER.EXE image.

• Installs the SYS$COMMON:[SYS$STARTUP]GCMSRV$STARTUP.COM file.

• Defines the SYS$COMMON:[SYS$CONFIG] directory with the logical name
GCMSRV$DIR.

• Installs the following files in directory GCMSRV$DIR:

– GCM_RULESET.XML

– GCM_CUSTOM.XML

– GCM_BANNER.JPG

– GCM_NOTICE.HTML

– GCM$SETUP.EXE

– GCM_CERT.PEM

– GCM_PRIVKEY.PEM

Installing the Graphical Configuration Manager (GCM) 13–3

Example 13–1 shows a sample GCM server installation.

Example 13–1: Sample GCM Server Installation

$ PRODUCT INSTALL GCM_SERVER

The following product has been selected:
CPQ AXPVMS GCM_SERVER V1.0 Layered Product

Do you want to continue? [YES]

Configuration phase starting . . .

You will be asked to choose options, if any, for each selected product
and for any selected products that may be installed to satisfy software
dependency requirements.

CPQ AXPVMS GCM_SERVER V1.0: Graphical Configuration Manager V1.0

COPYRIGHT (C) 2002 -- All rights reserved

Compaq Computer Corporation

License and Product Authorization Key (PAK) Information

* This product does not have any configuration options.

Copying GCM Release Notes to SYS$HELP

Will install the GCM Server V1.0.

GCM Startup File

Execution phase starting . . .

The following product will be installed to destination:
CPQ AXPVMS GCM_SERVER V1.0 DISK$WFGLX5_X931:[VMS$COMMON.]

Portion done: 0%...10%...20%...30%...90%...100%

The following product has been installed:
CPQ AXPVMS GCM_SERVER V1.0 Layered Product

$

Example 13–2 lists the files in the current directory after the GCM server is
installed.

Example 13–2: Directory of GCM Server Files

$ SET DEFAULT SYS$COMMON:[SYS$CONFIG]
$ DIRECTORY

Directory SYS$COMMON:[SYS$CONFIG]

GCM$SETUP.EXE;1 GCM_BANNER.JPG;1 GCM_CERT.PEM;1 GCM_CUSTOM.XML;1
GCM_NOTICE.HTML;1 GCM_PRIVKEY.PEM;1 GCM_RULESET.XML;1 GCM_SERVER.COM;1

13–4 Installing the Graphical Configuration Manager (GCM)

13.3.3 Installing the GCM Client

Section 13.3.3.1 describes how to install the OpenVMS GCM client. Section 13.3.3.2
describes how to install the PC GCM client.

13.3.3.1 OpenVMS GCM Client

Example 13–3 shows a sample OpenVMS GCM client installation.

Example 13–3: OpenVMS GCM Client Installation

$ PRODUCT INSTALL GCM_CLIENT

The following product has been selected:
CPQ AXPVMS GCM_CLIENT V1.0 Layered Product

Do you want to continue? [YES]

Configuration phase starting . . .

You will be asked to choose options, if any, for each selected product
and for any selected products that may be installed to satisfy software
dependency requirements.

CPQ AXPVMS GCM_CLIENT V1.0: Graphical Configuration Manager V1.0 Client

COPYRIGHT (C) 2002 --- All rights reserved

Compaq Computer Corporation

License and Product Authorization Key (PAK) Information

* This product does not have any configuration options.

Copying GCM Release Notes to SYS$HELP

Will install the GCM Java Client V1.0.

Will install a private copy of the Java JRE V1.2.2-3.

Will install a private copy of the Java Fast VM V1.2.2-1

Execution phase starting . . .

The following product will be installed to destination:
CPQ AXPVMS GCM_CLIENT V1.0 DISK$WFGLX5_X931:[VMS$COMMON.]

Portion done: 0%...10%...20%...30%...90%...100%

The following product has been installed:
CPQ AXPVMS GCM_CLIENT V1.0 Layered Product

$

Example 13–4 lists the files in the current directory the OpenVMS GCM client is
installed in. Note that the OpenVMS GCM client installation installs the Java
Run-Time Environment in the JRE.DIR directory.

Installing the Graphical Configuration Manager (GCM) 13–5

Example 13–4: Directory of GCM Client Files

$ SET DEFAULT SYS$COMMON:[GCM_CLIENT]
$ DIRECTORY

Directory SYS$COMMON:[GCM_CLIENT]

BIN.DIR;1 GCM_CERT.CRT;1 IMAGES.DIR JRE122.DIR;1
LIB.DIR;1 README.TXT;1;1 RUN_GCMCLIENT.COM;1

13.3.3.2 PC GCM Client

To install the PC GCM client, first copy the GCM Client zip file, which can be found
on the OpenVMS Software web site at

http://www.openvms.compaq.com/openvms

and then use a zip utility to install the GCM client.

You can also find GCM on the OpenVMS Alpha Version 7.3–1 Layered Product
CD-ROM.

The installation process allows you to select the Windows directory that will
contain the GCM client. Note that to retain any preferences between GCM client
sessions, you must start the GCM client from the directory you select during
installation. You can accomplish this by clicking the GCM Client icon.

13.3.4 Setting Up the GCM Server

To set up the GCM server, first set default to the SYS$COMMON:[SYS$CONFIG]
directory, and then run GCM$SETUP.EXE to perform the following tasks:

• Define the initial configuration of the association.

• Authorize the initial user (username, password, and privileges).

• Choose whether or not to start the GCM server immediately.

• Determine whether or not to automatically start the GCM server when the
system boots.

During GCM server setup, you can also choose to authorize additional GCM users.

Running GCM$SETUP.EXE generates and encrypts the GCM administration
database file SYS$COMMON:[SYS$CONFIG]GCM_ADMIN.EDB. Choosing to
start the GCM server executes the SYS$STARTUP:GCMSRV$STARTUP.COM
procedure, which results in the following:

• Creation and execution of GCMSRV$DIR:GCM_STARTUP.COM,
which starts the GCM server as a detached process with the log file
GCMSRV$DIR:GCM_SERVER.LOG.

• Starting the GCM server with process name GCM_SERVER.

_______________________ Note _______________________

The GCM server automatically restarts after a server fault. If the
GCM server hangs, it will time out and restart. You can also enter a
RESTART command from a suitably privileged GCM client.

The first time a GCM server restarts, its process name is
GCM_SERVER01. Thereafter, each time the GCM server restarts,

13–6 Installing the Graphical Configuration Manager (GCM)

its process name is incremented by one, up to GCM_SERVER99; at
that point, subsequent restarts are disabled to prevent the GCM
server from entering a restart loop.

You can prevent attempts at automatic restart by defining the
system logical name GCMSRV$ABORT. After you eliminate the
cause of the restart attempts, you must deassign this logical name to
enable automatic restart of the GCM server.

Example 13–5 is an example of how to set up the initial GCM server configuration.

Example 13–5: Sample GCM Server Setup

$ SET DEFAULT SYS$CONFIG
$ DIRECTORY

Directory SYS$COMMON:[SYS$CONFIG]

GCM$SETUP.EXE;1 GCM_BANNER.JPG;1 GCM_CERT.PEM;1 GCM_CUSTOM.XML;1
GCM_NOTICE.HTML;1 GCM_PRIVKEY.PEM;1 GCM_RULESET.XML;1

Total of 7 files.
$ RUN GCM$SETUP

OpenVMS GCM-Server Setup Utility
Copyright 2002, Hewlett Packard Corporation

This utility initializes the GCM Administrative Database:
SYS$COMMON:[SYS$CONFIG]GCM_ADMIN.EDB

If you are performing an initial GCM-Server installation that will
create an Association of more than a single server instance, you must
perform the following tasks to assure proper server synchronization:

1) Create the new local database using this utility.
2) Copy the database to all other GCM-Server instances in your

Association.
3) Start each GCM-Server.

You can start servers via $@SYS$STARTUP:GCMSRV$STARTUP.COM or by
invoking this utility on each system. When an existing database is
found, this utility will offer additional server startup options.

Continue (Y/N) {Y}?

Do you prefer full text assistance (Y/N) {N}? y

SERVER DISCOVERY TCP/IP PORT NUMBER:

Use the default Port Number 4100 (Y/N) {Y}? y

CONNECTION BOUNDS:

Use the default concurrent CLIENT limit of 4 (Y/N) {Y}? y

Use the default concurrent SERVER limit of 8 (Y/N) {Y}? y

CONNECTION SECURITY:

WARNING - DISABLING SECURITY COULD POTENTIALLY COMPROMISE THE
INTEGRITY OF YOUR SYSTEM AND IS NOT RECOMMENDED BY HEWLETT PACKARD.

Installing the Graphical Configuration Manager (GCM) 13–7

Example 13–5: Sample GCM Server Setup (cont.)

Use SSL Client-Server Security (Y/N) {Y}? y

%SECURITY - WILL BE ENABLED.

SERVER ASSOCIATION RECORD:

Enter the Association Name (use no quotes): GCM Test Association

SYSTEM RECORDS:

Enter a SYSTEM Name (ex: star.zko.hp.com) (RETURN when done):
wfglx4.zko.hp.com

Enter a System IP Address (0 to use DNS): 16.32.112.16

Enter a System Number (range 0-7): 0

Enter a HARD PARTITION Number (range 0-7): 0

Enter a SOFT PARTITION Number (range 0-7): 0

%Define additional system records as needed...

Enter a SYSTEM Name (ex: star.zko.hp.com) (RETURN when done):
wfglx5.zko.hp.com

Enter a System IP Address (0 to use DNS): 16.32.112.17

Enter a System Number (range 0-7): 0

Enter a HARD PARTITION Number (range 0-7): 0

Enter a SOFT PARTITION Number (range 0-7): 1

%Define additional system records as needed...

Enter a SYSTEM Name (ex: star.zko.hp.com) (RETURN when done):

CLIENT AUTHORIZATION RECORDS:

Enter Client’s Full Name or Title (RETURN when done): First Last

Enter Client’s Username: First

Enter initial Password for First: Last

Enter EMAIL Address for First: First.Last@hp.com

Give First CONFIG Privilege (Y/N) {Y}? y

COMMAND privilege allows a user to issue DCL commands.

Give First COMMAND Privilege (Y/N) {Y}? y

Give First USER-COMMAND Privilege (Y/N) {Y}? y

Give First POWER Privilege (Y/N) {Y}? y

13–8 Installing the Graphical Configuration Manager (GCM)

Example 13–5: Sample GCM Server Setup (cont.)

Give First ADMIN Privilege (Y/N) {Y}? y

Enable First account now (Y/N) {Y}? y

%Define additional client records as needed...

Enter Client’s Full Name or Title (RETURN when done):

SERVER STARTUP OPTIONS:

Do you want the local GCM-SERVER to start on System Boot (Y/N) {Y}? y

Do you want to start the local GCM-SERVER now (Y/N) {Y}? y

************************ POST SETUP TASKS **************************

This completes the GCM Admin Database initialization.

IMPORTANT:

If you are using multiple GCM-Servers, copy the newly created GCM
Admin Database file: SYS$COMMON:[SYS$CONFIG]GCM_ADMIN.EDB, to the
same location on each system you defined in the Association, then
start or restart each server via $ @SYS$STARTUP:GCMSRV$STARTUP.COM

If the database has been properly defined, each server will detect
the presence of the other servers and form the specified Association.
If the GCM_SERVER process fails to start, examine the server logfile
SYS$COMMON:[SYS$CONFIG]GCM_SERVER.LOG.

When the server has started, you may use the GCM-Client to establish
a connection and further tune the installation.

For maximum security, you may wish to protect or remove this utility.

$

$

For an example GCM server setup with complete prompting text that explains
each entry, see Section 13.12.

GCM Administration Database

The GCM$SETUP utility prompts you for details regarding system configuration,
user identification, and startup methods.

To enhance security, you can rename, delete, or otherwise protect the GCM setup
utility after you have run it. The setup utility is required again only if you need
to rebuild the initial database.

During the initial setup, you must define at least one system to run the GCM
server (typically, the system you are logged in to) and authorize one user with
administrator privilege. This user can then run the GCM client and connect to the
GCM server for further configuration and tuning. During GCM server setup, you
can define additional instances in the association, and you can authorize additional

Installing the Graphical Configuration Manager (GCM) 13–9

GCM users with individual access privileges. You can also perform these tasks
from a GCM client at any time.

The GCM setup utility creates the SYS$COMMON:[SYS$CONFIG]GCM_AD-
MIN.EDB file, which is the initial GCM administration database. This is an
encrypted database that contains information about the association and its users.
In normal operation, this database can be interpreted only by the GCM server.
(See Section 13.9.) If you have configured the association with more than one
instance, you must manually copy the GCM administration database file to the
GCM server directory of each additional instance before you start GCM servers
on those instances. Failure to copy the database file can prevent the association
from being properly created, or can cause the initial GCM administration database
to be overwritten.

Note that changing the configuration of the association, such as by adding a new
instance or by removing an instance, is a major modification. Whenever you
make a major modification to the association, you must manually copy the GCM
administration database file to the GCM server directory on that instance before
starting the GCM server.

Minor modifications to the database in an active association automatically
propagate to all GCM servers; you do not have to restart the GCM servers. Minor
modifications include actions such as adding and removing GCM client records
or adjusting GCM server parameters.

13.4 Starting the GCM Server

You can start the GCM server automatically (Section 13.4.1) or manually
(Section 13.4.2).

Note that you should run only one GCM server in an instance.

13.4.1 Automatic GCM Server Startup

If you select automatic GCM server startup during server setup (see Section 13.3.4),
the setup utility executes the following command:

$ MC SYSMAN STARTUP ADD FILE GCMSRV$STARTUP.COM

You can also enter this command manually at any time.

The GCMSRV$STARTUP.COM procedure performs the following tasks:

• Defines the required system logical names.

• Creates a small worker procedure, SYS$COMMON:[SYS$CON-
FIG]GCM_SERVER.COM.

• Runs the GCM server process as a detached process.

To turn off automatic startup, enter the following command:

$ MC SYSMAN STARTUP REMOVE FILE GCMSRV$STARTUP.COM

13.4.2 Manual GCM Server Startup

You can manually start the GCM server at any time by entering the following
command:

$ @SYS$STARTUP:GCMSRV$STARTUP

13–10 Installing the Graphical Configuration Manager (GCM)

13.5 Postinstallation Administrative Tasks

The administrator performs the following tasks from a privileged GCM client:

• Authorizes other GCM users (Section 13.5.1).

• Posts documents to the library (optional) (Section 13.5.2).

• Defines the GCM_BANNER.JPG login banner (optional) (Section 13.5.3).

• Posts the system notices GCM_NOTICE.HTML file (optional) (Section 13.5.4).

• Defines custom system and user-level commands (Section 13.5.5).

The following sections and the GCM client help provide more information about
these tasks.

13.5.1 Authorizing GCM Users and Defining the Subscription Template

You can define, authorize, and enable GCM users during the GCM server setup
procedure, or at any time from the GCM client (with admin privilege). During a
a typical installation, you will define the key users of the system from the setup
utility. Additional users can request access to the GCM server association using a
subscription process and email request.

As part of the postinstallation setup, the first time the GCM server is started it
creates SYS$COMMON:[SYS$CONFIG]GCM_TEMPLATE.XML, a subscription
template file. This file contains a template to create a subscription form tailored
to your specific site. To customize this template, the administrator must connect
to a GCM server from a GCM client, and select Edit Subscription Template on
the File menu.

When the default subscription template is displayed, complete the form as needed
and press OK to return the official template to all active GCM servers. (You can
also manually copy this file to the other instances in the configuration if the
GCM servers are not yet running.) The subscription form includes fields that
allow a potential user to request a user name, password, and access level. As the
administrator, you can choose which authorizations to make visible to users. For
example, you can disallow users from requesting the Admin privilege if you prefer
to keep a single system administrator account.

_________________________ Note _________________________

GCM user authorization records (user name, password, and so on) are
completely independent of any OpenVMS authorization mechanism.

Once the subscription form is initialized, users can discover GCM-capable
instances (those running a GCM server) and request a subscription form. A user
cannot request a subscription form until the administrator has customized the
subscription template. When a user completes the subscription form, it is returned
to the GCM server and email is sent to the administrator notifying about a new
subscription request. To approve a request, the administrator connects to the
association from a GCM client, edits the GCM administration database, and selects
options to approve or disapprove of the request. Optionally, the administrator
clicks the Email button to bring up an email response to the user advising of
the status of the request. As soon as a subscription request is approved and the
account is enabled, the updated GCM administration database is automatically
propagated to the other GCM servers and the requesting GCM user is allowed
access to the GCM servers in the association.

Installing the Graphical Configuration Manager (GCM) 13–11

To revoke a GCM user’s access privileges, the administrator deletes the client
record or simply disables the account. A client that is currently connected is
immediately disconnected.

GCM User Privileges

When you authorize a user, you can grant the following privileges:

Privilege Description

Config Allows the user to modify the configuration of the association

Command Allows the user to define commands for self

User Command Allows the user to define commands for all clients

Admin Allows the user to edit the GCM administration database
(GCM$ADMIN.EDB)

Power Allows the user to power systems and components on and off

13.5.2 Managing the Library

The GCM includes a distributed document retrieval system. This system allows
you to post documents in directories you specify on individual GCM servers for
users to retrieve and view. (To invoke the Library dialog box, select Edit Admin
Database on the File menu.) In addition, programs and procedures that run on
GCM server systems can produce output files for retrieval and viewing by users.

You can use wildcard characters to search for documents. For example, executing
a remote GCM server command procedure may run a performance analysis that
generates an Excel spreadsheet output file. Using the GCM, you can invoke this
procedure simultaneously on multiple systems in the association. Each system may
produce a result file with unique identifying features in its file specification, such
as the node name or a timestamp. You can specify the document with wildcards,
for example, CFG_*_LOG.CSV. This specification results in a search for matching
files on each system. Any matching files are listed in the GCM client’s library
as documents available for retrieval. Full OpenVMS directory specifications are
also allowed.

Whenever a user opens a GCM server library and retrieves a document, a copy
of that document is written into the user’s GCM client directory. After the user
ends GCM client session, these files are still available for viewing in an editor or
browser. However, any changes made to the file are not propagated to the library
copy on the GCM server. Users must manually delete these outdated files when
they no longer need them.

13.5.3 Custom Banners

You can provide a custom banner image for your company or organization by copying
your own JPEG file to SYS$COMMON:[SYS$CONFIG]GCM_BANNER.JPG. This
file should be a reasonable size to avoid lengthy download delays. This file is
displayed in GCM clients as they connect.

13.5.4 System Notices

You can post general system notices for GCM clients by editing the
SYS$COMMON:[SYS$CONFIG]GCM_NOTICE.HTML file. This file is a simple
hypertext document that can contain messages to display when a GCM client
connects to the GCM server. Keep edits to this file simple. You can embed links, but
do not embed scripts, images, sounds, and so on. The GCM client’s built-in browser

13–12 Installing the Graphical Configuration Manager (GCM)

(the Java default browser) is less sophisticated than most modern browsers and is
not intended for general use.

13.5.5 Customizing Commands

You can customize GCM commands in two ways. A user with user command
privilege has access to menu items that allow the user to define and save custom
DCL commands. These commands can perform any function supported by
OpenVMS and DCL. The GCM server does not currently support interactive
commands or command procedures.

_________________________ Note _________________________

When authorizing the user command privilege, remember that all
commands are executed by the GCM server in system context. GCM
makes no attempt to prevent you from executing commands that are
detrimental to system performance or operation.

You can also create custom commands with extended ruleset definitions. On each
GCM server, an option file (SYS$COMMON:[SYS$CONFIG]GCM_CUSTOM.XML)
contains simple menu definition statements in XML format. If this file is present
when the GCM server starts up, these additional menu commands will appear in
the GCM client for all users with the command privilege. This provides a means
for system administrators to define instance-specific commands for their users. A
sample file is shipped in the kit and contains instructions for defining additional
custom commands. If you do not wish to use this capability, you may delete the
custom ruleset file. For more information about using custom commands, see
Section 13.7.1.

13.6 Configuring the Association

It is critical to specify the correct values of systems and hard and soft partitions
for GCM to run properly. Incorrect values will cause command routing to fail.
Before installing the GCM and defining the configuration of the association, it can
be helpful to define the association on a worksheet.

Table 13–1 is an example of how to define an association for a system with two hard
partitions, each of which contains four soft partitions. 1

Table 13–1: Sample Worksheet for A Simple Association
Fully Qualified System
Name IP Address System Hard Partition

Soft
Partition

sysnam1.zko.dec.com 16.32.112.1 0 0 0

sysnam2.zko.dec.com 16.32.112.2 0 0 1

sysnam3.zko.dec.com 16.32.112.3 0 0 2

sysnam4.zko.dec.com 16.32.112.4 0 0 3

sysnam5.zko.dec.com 16.32.112.5 0 1 0

sysnam6.zko.dec.com 16.32.112.6 0 1 1

sysnam7.zko.dec.com 16.32.112.7 0 1 2

sysnam8.zko.dec.com 16.32.112.8 0 1 3

1 A value of zero causes DNS name translation to look up the current IP address.

Installing the Graphical Configuration Manager (GCM) 13–13

13.6.1 Consideration

An association can be a single system, a combination of hard and soft partitions
within a single system, or multiple systems with any combination of hard and soft
partitions. Typically, the GCM is used within a single system, including all soft
partitions that exist in that system. Although you can extend a GCM association
to span multiple systems, including older AlphaServer systems, be aware of the
performance impact of creating large associations.

A burst of network traffic is created by the GCM in response to a configuration
change. If your association spans many systems and partitions, the volume of
data may become excessive. Although Compaq is continually improving the
operation of the GCM, you can define associations that become unmanageable. It is
difficult to set limits on association size because of the number of factors that affect
performance, such as network speed and load, and GCM client system resources.
Note that the design goal for the initial release of the GCM is a maximum of eight
partitions (an AlphaServer GS320 can contain up to eight soft partitions). Typical
customer installations contain far fewer partitions.

13.6.2 Adding Systems to An Association

A system is a physical machine cabinet. You can add systems to an association
with the GCM Setup utility (which requires you to define at least one local system;
see Section 13.3.4) or at any time using the GCM client. As you add new systems
to the association, you must specify identifying details and, if necessary, adjust
GCM server limits.

You must assign a unique system number to each system. For example, a GS320
may have up to eight partitions, all within the same system. System numbers
are assigned sequentially starting with zero. Each system number results in the
creation of a separate branch of the configuration display.

For each hard partition within each system, you must define a a hard partition
number. This must be the actual hard partition number. For example, if you
partition a GS320 into four hard partitions, you must be aware of which partitions
are numbered zero through three.

For each soft partition within each hard partition, you must define a soft partition
number. This must be the actual soft partition number. For example, if you
split hard partition number 0 into soft partitions 0 and 1, you must specify
the appropriate partition number for each system. Table 13–1 shows a system
configured in this way.

Note that all partitions reside within system 0. If you extend your association to
include another system with its own set of partitions, those partitions will have
system 1 designations.

_________________________ Note _________________________

It is critical that you set these values correctly. If you fail to provide
proper values, GCM will be unable to form the desired association,
or will be unable to properly route command traffic through the
association. At times you may need to invoke the native Graphical
Configuration Utility (GCU) utility with the CONFIGURE GALAXY
command to determine the proper identifiers for the GCM.

Note that the GCM server maintains limits over the number of concurrent GCM
clients and GCM servers it will support. The defaults are four concurrent GCM

13–14 Installing the Graphical Configuration Manager (GCM)

clients and eight concurrent GCM servers. When these limits are reached,
additional GCM client or GCM server connection requests are denied. You can
alter these values by editing the GCM administration database from a privileged
GCM client.

Remember to manually propagate the modified GCM administration database file
GCM_ADMIN.EDB to all instances that are new to the association. If a GCM
server was running previously but is new to this association, stop all GCM servers,
manually copy the GCM administration database file, and then restart all GCM
servers. Once you get your association set up and functioning, it is best not to
alter it more than necessary. Once stability has been achieved, the GCM should
remain stable and usable.

13.7 Customizing GCM

You can customize GCM in the following ways:

• Customize the GCM client application geometry.

This includes window colors, sizes, and placement. This is accomplished using
GCM client menu functions. See the GCM client help for more information.

• Customize connection attributes.

These include the IP port assignment, whether to retrieve notices or banners
upon connection, and various limits and diagnostic attributes. You can modify
all these attributes from the GCM client. Note that if you change the IP port
assignment, you must restart the GCM servers.

• Define custom commands.

For a description, see Section 13.7.1.

13.7.1 Defining and Using Commands

The GCM supports distributed execution of OpenVMS DCL commands and
command procedures. However, at this time, the GCM does not support interactive
commands and procedures. A DCL command that is a good candidate for execution
using GCM has the following characteristics:

• It is immediately executed.

• It produces its output upon execution.

• It returns immediately.

Many DCL commands require a response from the user or do not return
immediately. Such commands are not good candidates for use with GCM. For
example, the RUN command does not always return immediately. The GCM
server executes each command request within a subprocess but does not return
any response to you; nor does the subprocess terminate if the program does not
terminate. Therefore, to stop the subprocess you must enter a SHOW SYSTEM
command to identify the associated subprocess to stop manually.

All GCM server commands are assigned subprocess names in the form GCM_<node
name_CMDnnnn , where nnnn is a command sequence number. Typically, these
subprocesses run to completion, delivering an AST to the GCM server to let it know
that related output can be found in a temporary log file of the same name as the
subprocess. After returning the result file, the subprocess and its related file are
deleted. If the subprocess is executing a command that does not complete or that
is waiting for input, the GCM server never sees command completion and never
returns results. This does not prevent the GCM server from performing other
duties, but it can lead to unexpected command behavior.

Installing the Graphical Configuration Manager (GCM) 13–15

Future releases of GCM should provide additional command functionality.
However, there will always be a class of command functionality that cannot
be supported. Launching applications with graphical interfaces or complex
interaction is beyond the intended use of GCM. In many cases, you can create a
simple command procedure wrapper to allow an application to manage its own
display redirection.

13.8 GCM Server Log Files
Several log files are generated as part of normal GCM server execution. Some of
these log files are useful for GCM server troubleshooting (see Section 13.9). Log
files may include the system node name as part of the file specification as a means
of isolating log files from individual system roots if the system disk is a cluster
common system disk.

The following log files are generated:

• Run-time log files

When a GCM server process is started, it creates the
SYS$COMMON:[SYS$CONFIG]GCM_nodename_SERVER.LOG log
file. This log file may contain details to help troubleshoot GCM server faults.

• Command log files

An additional log file is created for each GCM server command that is executed.
These log files have names in the following form:

GCM_<nodename>_CMD<sequence_number>.LOG

When a command executes successfully, the related log file is deleted. In rare
cases, a GCM server fault may orphan one of these log files. At GCM server
startup, any residual log files are deleted.

• Connection log files

During run time, the GCM servers can be set to
generate a connection log file. This optional file,
SYS$COMMON:[SYS$CONFIG]GCM_<nodename>_CONNECT.LOG, contains
a timestamped history of successful and failed GCM client connections.

During run time, the GCM servers can be set to
generate a GCM server event log. This optional file,
SYS$COMMON:[SYS$CONFIG]GCM_<nodename>_EVENT.LOG, contains a
wide variety of information that may help with GCM server troubleshooting.
The content of this event log varies based on GCM server diagnostic flags.
Event log entries typically are disabled to avoid generating excessively large
files.

13.9 Troubleshooting the GCM Server
Any time that the GCM server is started using the normal startup procedure,
it is running in a mode that supports automatic restart behavior. When run in
its normal mode, the GCM server produces its run-time log file, but offers little
additional information for troubleshooting possible GCM server problems.

The following sections contain information to assist you in troubleshooting possible
GCM server problems.

13.9.1 Obtaining Diagnostic Information

At times it may be beneficial to run the GCM server in a mode that allows some
diagnosis to occur. Diagnostics produce procedural trace information that is either

13–16 Installing the Graphical Configuration Manager (GCM)

written to the GCM server event log, if enabled, or output to the screen, if enabled.
Typically, diagnostic output is directed to the screen; however, the event log output
is useful if you need to forward it to Compaq support personnel for help.

To get diagnostic screen output from the GCM server, you must run the GCM
server interactively rather than as a detached process. To do this, stop the GCM
server if it is currently running, and restart it from a DECterm window by entering
the following command:

$ RUN SYS$SYSTEM:GCM_SERVER.EXE

Once the GCM server is running, connect to it from a GCM client with
administrative privileges, and edit the GCM administration database as follows:

1. Select Edit Admin Database from the File menu.

2. Select the Server Init page.

3. Locate the Diagnostic text field and note the buttons for selecting the desired
output.

4. Click the Screen output button and enter the appropriate diagnostic code or
codes, according to the following table. You can set more than one flag at
a time.

Code
(decimal) Code (hex) Function Action

0 0 DIAGNOSTIC_DISABLE

1 1 HEARTBEAT_TRACE (servers disconnecting)

2 2 TRANSACTION_TRACE (general troubleshooting)

4 4 XML_TRACE (general troubleshooting)

8 8 LOCK_TRACE (server hangs)

16 10 COMMAND_TRACE (disables execution and
dumps packet)

32 20 CRYPTO_DISABLE (GCM administration
database troubleshooting)

_________________________ Note _________________________

By default, regardless of whether the GCM client-server communications
is using security (SSL), the GCM administration database is always
encrypted. On rare occasions, you may want to disable encryption of
the GCM administration database GCM administration database file.
By setting the CRYPTO_DISABLE flag, GCM servers will no longer
encrypt and update the GCM_ADMIN.EDB file. Instead, they will
output plain ASCII XML to GCM_ADMIN.DAT, and will accept input on
startup from GCM_ADMIN.DAT. This allows you to directly edit the
XML structures within the GCM administration database and to review
modifications made by the GCM client and server.

________________________ Caution _______________________

Run the GCM servers with the CRYPTO_DISABLE flag set
only for troubleshooting, because running the servers with the
CRYPTO_DISABLE flag set exposes GCM user authorization records in
simple ASCII (unencrypted) form.

Installing the Graphical Configuration Manager (GCM) 13–17

Remember to disable diagnostics before returning a GCM server to
service. If you fail to disable logging, the related GCM server log files
can grow very large, and GCM server performance will suffer.

13.9.2 Potential Problem Areas

Heartbeats are a potential problem area for heavily loaded systems. For GCM
servers to detect the presence and loss of GCM clients and GCM servers in other
instances, periodic heartbeat transactions are issued. The GCM server is smart
enough to optimize the heartbeat process, altering the rate based upon usage, and
requiring only one-way heartbeats. At times, GCM server or network activity
delays the issuance of a heartbeat. The GCM server is designed to tolerate a
number of missed heartbeats before assuming disconnection.

You can tune heartbeat values to suit specific needs by using the GCM client to
edit the GCM administration database. Three values apply: the Client Pulse,
Server Pulse, and Flat Line. The Pulse values are the number of seconds between
heartbeat transactions. The Flat Line value is how many heartbeats can be missed
before disconnection. These are preset to values that yield good behavior without
undue traffic. Under special circumstances, you can alter these values if you find
your sessions are being disconnected. These values have no effect on the overall
responsiveness of the GCM with regard to command and event processing.

13.9.3 Timeout Detection

The GCM client contains a debug hook to turn off timeout detection entirely. To
enter a debug mode, press Ctrl+Alt+D+B. A TEST menu item indicates this mode
is active. In this mode the GCM client remains connected regardless of how long it
takes to get a response back from a slow GCM server (such as one that is being
debugged).

13.10 Performance
Because GCM is a client/server application, it is slower to respond to commands
and configuration events than its native counterpart, the Galaxy Configuration
Utility (GCU). While a Galaxy CPU assignment takes only a few milliseconds and
is reflected immediately by the GCU, the GCM may take several seconds to update
its display. For real-time response, run the GCU (and possibly multiple instances
of the GCU if you have multiple hard partitions).

PC systems running Microsoft Windows require substantially more physical
memory than may be present in a typical desktop PC. For best performance, your
PC should have at least 128 MB (and preferably more). Disk space is seldom a
concern.

The native OpenVMS GCM client does not perform quite as well as the Windows
GCM client. On OpenVMS, user accounts must have substantial pagefile quota to
run the GCM client. Compaq suggests that you set the PGFLQUO parameter to
350000 or more. (This is true of all Java applications on OpenVMS.)

Performance of GCM servers is typically a function of network behavior. GCM
servers sit idle the majority of time, waking up every so often to issue a heartbeat
transaction to other GCM servers or clients. The GCM server responds to
configuration change events by reencoding the AlphaServer Configuration Tree
structure in memory and then transmitting an XML- encoded representation to all
active GCM servers and clients. This typically creates a burst of approximately 100
KB of network traffic. In an association that contains multiple GCM servers, with

13–18 Installing the Graphical Configuration Manager (GCM)

each server actively supporting GCM clients, the GCM servers must merge these
bursts of data into a single configuration model, and then forward that model to
each GCM client. The new model can require a megabyte or more.

To ensure optimal GCM performance, remember the following:

• Large configuration changes usually occur when GCM servers join or leave the
association. Simple command processing produces far less traffic.

• The best way to ensure good GCM server performance is to limit the number
of GCM servers in your association.

• You can define multiple associations to keep the size of any one association
from growing excessively large.

13.11 Maintaining the GCM Server

In general, you do not need to perform maintenance tasks on the GCM server.
However, if you have enabled some of the extended logging capabilities, the
respective log files may grow quite large over time, and you may need to check
these files periodically if you require such auditing. All such log files are found in
the SYS$COMMON:[SYS$CONFIG] directory. The normal mode of operation
disables logging.

The GCM client requires only the occasional cleanup of any library files that have
been retrieved by the user. Each time a library file is retrieved, a copy is stored on
the local GCM client system.

13.12 Sample Verbose GCM Server Setup

This section contains a sample verbose GCM server setup.

$ SET DEFAULT SYS$CONFIG
$ DIRECTORY

Directory SYS$COMMON:[SYS$CONFIG]

GCM$SETUP.EXE;1 GCM_BANNER.JPG;1 GCM_CERT.PEM;1 GCM_CUSTOM.XML;1
GCM_NOTICE.HTML;1 GCM_PRIVKEY.PEM;1 GCM_RULESET.XML;1

Total of 7 files.
$ RUN GCM$SETUP

OpenVMS GCM-Server Setup Utility
Copyright 2002, Hewlett Packard Corporation

This utility initializes the GCM Administrative Database:
SYS$COMMON:[SYS$CONFIG]GCM_ADMIN.EDB

If you are performing an initial GCM-Server installation that will
create an Association of more than a single server instance, you must
perform the following tasks to assure proper server synchronization:

1) Create the new local database using this utility.
2) Copy the database to all other GCM-Server instances in your Association.
3) Start each GCM-Server.

You can start servers via $@SYS$STARTUP:GCMSRV$STARTUP.COM or by invoking
this utility on each system. When an existing database is found, this
utility will offer additional server startup options.

Continue (Y/N) {Y}?

Do you prefer full text assistance (Y/N) {N}? y

SERVER DISCOVERY TCP/IP PORT NUMBER:

Installing the Graphical Configuration Manager (GCM) 13–19

By default, the GCM-Servers listen for client connections on
TCP/IP Port 4100. This can be changed, but each server will need
to be restarted, and each client will need to specify the new
port number in their "Server Connection Preferences" settings.

Use the default Port Number 4100 (Y/N) {Y}? y

CONNECTION BOUNDS:

By default, the GCM-Servers support up to 4 concurrent clients
and 8 concurrent servers. This can be changed, but each server
will need to be restarted. Be advised that GCM performance may
suffer as these values are increased.

Use the default concurrent CLIENT limit of 4 (Y/N) {Y}? y

Use the default concurrent SERVER limit of 8 (Y/N) {Y}? y

CONNECTION SECURITY:

By default, the GCM-Servers expect that their clients will be
using secure connections (SSL). This can be disabled, but the
servers will need to be restarted, and each client will need
to change their "Server Connection Preferences" settings.

WARNING - DISABLING SECURITY COULD POTENTIALLY COMPROMISE THE
INTEGRITY OF YOUR SYSTEM AND IS NOT RECOMMENDED BY HEWLETT PACKARD.

Use SSL Client-Server Security (Y/N) {Y}? y

%SECURITY - WILL BE ENABLED.

SERVER ASSOCIATION RECORD:

Multiple GCM-Servers can form an "Association" of systems, providing
a wide management scope. This Association may include one server per
soft-partition on one or more hard-partition on one or more physical
system. Regardless of how many servers are in the Association, you
need to define an Association Name that describes the involved systems.
Choose a simple descriptive string such as "Engineering Lab Systems".

Enter the Association Name (use no quotes): GCM Test Association

SYSTEM RECORDS:

Each system in the Association must be uniquely identified by its
IP Address, System Number, Hard-Partition Number, and Soft Partition
Number. At least one system must be defined. You may define multiple
systems now, or define additional systems after establishing your
first client connection.

Enter a fully qualified name for the system running a GCM-Server.
For example: star.zko.hp.com. When you are done entering system
records, enter 0 at the following prompt.

Enter a SYSTEM Name (ex: star.zko.hp.com) (RETURN when done): wfglx4.zko.hp.com

Enter a fully qualified IP Address for the system running a
GCM-Server. For example: 16.32.112.16
If you prefer to use DNS to lookup the address, enter 0

Enter a System IP Address (0 to use DNS): 16.32.112.16

The SYSTEM NUMBER is a simple numeric value that uniquely identifies
soft and hard partitions that reside in a common partitionable
computer. For example, if you have two separate partitionable
computers in your Association, each having its own hard and soft
partitioned instances, enter a SYSTEM NUMBER of 0 for all hard and
soft partitions in the first computer, and enter 1 for those in the

13–20 Installing the Graphical Configuration Manager (GCM)

second computer.

Enter a System Number (range 0-7): 0

The HARD PARTITION NUMBER is a numeric value that uniquely identifies
which HARD Partition a GCM-Server resides within. If a system has
only a single HARD Partition, enter 0. If a system has multiple
HARD Partitions, use the appropriate Hard Partition ID. These are
sequential numeric values which were used when creating the system
partitions. You can also obtain these values by running the Galaxy
Configuration Utility via $ CONFIG GALAXY command.

Enter a HARD PARTITION Number (range 0-7): 0

The SOFT PARTITION NUMBER is a numeric value that uniquely identifies
which SOFT Partition a GCM-Server resides within. If a system has
only a single SOFT Partition, enter 0. If a system has multiple
SOFT Partitions, use the appropriate Soft Partition ID. These are
sequential numeric values which were used when creating the system
partitions. You can also obtain these values by running the Galaxy
Configuration Utility via $ CONFIG GALAXY command.

Enter a SOFT PARTITION Number (range 0-7): 0

%Define additional system records as needed...

Enter a fully qualified name for the system running a GCM-Server.
For example: star.zko.hp.com. When you are done entering system
records, enter 0 at the following prompt.

Enter a SYSTEM Name (ex: star.zko.hp.com) (RETURN when done): wfglx5.zko.hp.com

Enter a fully qualified IP Address for the system running a
GCM-Server. For example: 16.32.112.16
If you prefer to use DNS to lookup the address, enter 0

Enter a System IP Address (0 to use DNS): 16.32.112.17

The SYSTEM NUMBER is a simple numeric value that uniquely identifies
soft and hard partitions that reside in a common partitionable
computer. For example, if you have two separate partitionable
computers in your Association, each having its own hard and soft
partitioned instances, enter a SYSTEM NUMBER of 0 for all hard and
soft partitions in the first computer, and enter 1 for those in the
second computer.

Enter a System Number (range 0-7): 0

The HARD PARTITION NUMBER is a numeric value that uniquely identifies
which HARD Partition a GCM-Server resides within. If a system has
only a single HARD Partition, enter 0. If a system has multiple
HARD Partitions, use the appropriate Hard Partition ID. These are
sequential numeric values which were used when creating the system
partitions. You can also obtain these values by running the Galaxy
Configuration Utility via $ CONFIG GALAXY command.

Enter a HARD PARTITION Number (range 0-7): 0

The SOFT PARTITION NUMBER is a numeric value that uniquely identifies
which SOFT Partition a GCM-Server resides within. If a system has
only a single SOFT Partition, enter 0. If a system has multiple
SOFT Partitions, use the appropriate Soft Partition ID. These are
sequential numeric values which were used when creating the system
partitions. You can also obtain these values by running the Galaxy
Configuration Utility via $ CONFIG GALAXY command.

Enter a SOFT PARTITION Number (range 0-7): 1

%Define additional system records as needed...

Installing the Graphical Configuration Manager (GCM) 13–21

Enter a fully qualified name for the system running a GCM-Server.
For example: star.zko.hp.com. When you are done entering system
records, enter 0 at the following prompt.

Enter a SYSTEM Name (ex: star.zko.hp.com) (RETURN when done):

CLIENT AUTHORIZATION RECORDS:

At least one client must be defined in order to allow an initial
client-server connection to be established. Additional clients may
be defined now, or at any point using the client application and the
GCM Subscription Procedure. This initial client record must provide
fully privileged access for the specified user so that subsequent
GCM administration functions can be performed.

Enter a string which describes this client.
The string can be the users full name, or job title, etc.

Enter Client’s Full Name or Title (RETURN when done): First Last

Enter the clients USER name. This is a single word that identifies
the user, such as their last name.

Enter Client’s Username: First

Enter the clients PASSWORD. This is a unique GCM password,
unrelated to any system authorization function.
Note: Passwords can be changed by any GCM-Client with Admin privilege.

Enter initial Password for First: Last

Enter the clients EMAIL Address. This is particularly important
for the client that is serving the role of GCM Administrator as
they will receive email subscription requests.

Enter EMAIL Address for First: First.Last@hp.com

CONFIG privilege allows a user to issue commands that alter a system
configuration (if they also have the COMMAND privilege) and to load
and save configuration models.

Give First CONFIG Privilege (Y/N) {Y}? y

COMMAND privilege allows a user to issue DCL commands.

Give First COMMAND Privilege (Y/N) {Y}? y

USER-COMMAND privilege allows a user to create their own command
menu entries. Commands are executed in a privileged context so
use discretion when authorizing this privilege.

Give First USER-COMMAND Privilege (Y/N) {Y}? y

POWER privilege allows a user to issue commands that power on or off
system components for systems that support such operations.

Give First POWER Privilege (Y/N) {Y}? y

ADMIN privilege allows a user to modify the GCM-Server Administration
Database. Use discretion when authorizing this privilege.

Give First ADMIN Privilege (Y/N) {Y}? y

You may choose to ENABLE this client immediately, or enable the
client later once the GCM is fully configured.
IMPORTANT: Be sure to enable the initial administrator client!

Enable First account now (Y/N) {Y}? y

%Define additional client records as needed...

13–22 Installing the Graphical Configuration Manager (GCM)

Enter a string which describes this client.
The string can be the users full name, or job title, etc.

Enter Client’s Full Name or Title (RETURN when done):

SERVER STARTUP OPTIONS:

You may choose to have the local GCM-Server started automatically upon
system boot. If you choose this option, the server will be started
during the next system boot. To accomplish this, the startup file
SYS$STARTUP:GCMSRV$STARTUP.COM will be added to the Layered Product
startup database.

Do you want the local GCM-SERVER to start on System Boot (Y/N) {Y}? y

You may choose to start the local GCM-Server now, or you can start
it later via $@SYS$STARTUP:GCMSRV$STARTUP.COM

Do you want to start the local GCM-SERVER now (Y/N) {Y}? y

************************ POST SETUP TASKS **************************

This completes the GCM Admin Database initialization.

IMPORTANT:

If you are using multiple GCM-Servers, copy the newly created GCM
Admin Database file: SYS$COMMON:[SYS$CONFIG]GCM_ADMIN.EDB, to the
same location on each system you defined in the Association, then
start or restart each server via $ @SYS$STARTUP:GCMSRV$STARTUP.COM

If the database has been properly defined, each server will detect
the presence of the other servers and form the specified Association.
If the GCM_SERVER process fails to start, examine the server logfile
SYS$COMMON:[SYS$CONFIG]GCM_SERVER.LOG.

When the server has started, you may use the GCM-Client to establish
a connection and further tune the installation.

For maximum security, you may wish to protect or remove this utility.

$

Installing the Graphical Configuration Manager (GCM) 13–23

14
CPU Reassignment

OpenVMS supports several methods of managing CPU resources. The console
establishes the default owner instance for each CPU using the console environment
variables. This allows the CPU resources to be statically assigned, providing a
precise initial configuration. In the event of a cold boot (that is, power cycle or
initialization), this default configuration is restored from console nonvolatile RAM.

Once a configuration has been booted, OpenVMS provides more elegant means
of assigning resources for users with the CMKRNL (Change Mode to Kernel)
privilege. The following sections describe these methods.

14.1 DCL Reassignment

You can perform CPU reassignment operations if you have CMKRNL privilege
using the following DCL command:

$ STOP/CPU/MIGRATE=instance-or-id cpu-id

You must provide the target instance name (SCSNAME) or numeric ID (0, 1, and
so on), and the numeric ID of the CPU being reassigned. The following examples
show a few forms of this command:

$ STOP/CPU/MIGRATE=0 4 !Reassign CPU 4 to instance 0
$ STOP/CPU/MIGRATE=1 3,4,5 !Reassign CPUs 3,4,5 to instance 1
$ STOP/CPU 7/MIGRATE=BIGBNG !ReassignCPU 7 to instance BIGBNG
$ STOP/CPU/ALL/MIGRATE=0 !Reassign all secondary CPUs to instance 0

You can insert these commands into command procedures. For example, you
might want to move extra CPU resources to an instance in a startup procedure
of an application with known processing requirements. Similarly, you may
want to reassign CPUs away from an instance that is about to perform lengthy,
I/O-intensive operations (such as backups) so that the CPUs are available to other
instances. When the job completes, you may reassign them back or you may
reassign CPUs away from an instance that is shutting down.

You can only reassign resources away from an instance. This is the push model
defined by the Galaxy Software Architecture. This model prevents resources from
being “stolen” by other instances that may not be aware of their current usage. To
effectively manage the entire Galaxy system using DCL, you must either log in to
each of the involved instances or use the SYSMAN utility to execute the commands
on the owner instance.

14.2 GCU Drag-and-Drop Reassignment

The GCU provides an interactive visual interface for managing Galaxy resources.
Using the GCU, you can reassign CPUs by dragging and dropping them
among instances. Additionally, the GCU allows you to draw charts of various
configurations (known as configuration models) and save them as files. At any time
you can load and engage a configuration model, and the system reassigns resources
as needed to achieve the desired model.

CPU Reassignment 14–1

14.3 Intermodal Reassignment
Because of the resource push model defined by the Galaxy Software Architecture,
resources must be given away by the Galaxy instance that currently owns
them. For a utility or user to effectively manage resource assignment in a
multiple-instance Galaxy configuration, you must establish some means of
executing commands on each instance.

One such means is to open a window or terminal session on each of the Galaxy
instances and perform your resource management operations in each of these
windows.

Another method is use the SYSMAN utility and its underlying SMI server to
establish a command environment on the owner instance. Using this method,
you can write a fairly simple command procedure to perform specific resource
management operations. This method has some limitations, however. First, it
requires that the involved Galaxy instances must be in a cluster. Also, a command
procedure cannot effectively pass variable parameters to SYSMAN environment
scripts, and you cannot specify a remote system password within a SYSMAN script.
Therefore, it is cumbersome to generate a general-purpose command procedure
interface that uses SYSMAN.

The GCU does, in fact, use SYSMAN wherever possible to accomplish its
management actions. When a system is not configured to support SYSMAN, the
GCU attempts to use DECnet task-to-task communications among proxy accounts
as its management transport. If that approach also fails (that is, if the system is
not running DECnet or if the necessary proxy accounts are not set up), the GCU
is not able to manage Galaxy instances other than the one on which the GCU is
currently running. You can run multiple copies of the GCU if you choose, one per
Galaxy instance. However, you can assume that OpenVMS Galaxy systems are
likely to be clustered or to use DECnet.

The GCUs management actions are based in the SYS$MANAGER:GCU$AC-
TIONS.COM command procedure. You can modify this file to customize actions for
your own environment. For example, in a TCP/IP environment, you may choose
to use REXEC or a similar utility for your management transport, or you may
want to include some form of notification or logging whenever a management
action is executed.

The GCU$ACTIONS.COM file is somewhat unusual in the way it operates.
When using SYSMAN, the procedure builds small SYSMAN command scripts
in temporary files to deal with variable parameters that SYSMAN cannot
handle. When SYSMAN is not available, the procedure attempts to open a
DECnet task-to-task connection to a proxy account on the owner instance. If
successful, it uses this connection to shuffle command parameters to the copy
of GCU$ACTIONS.COM that resides on the owner instance. The end result is
execution of the command locally by the owner instance.

14.4 Software Reassignment Using Galaxy Services
Perhaps the best method for managing resource assignment is to use the Galaxy
APIs to write your own resource management routines. This allows you to base
your decisions for resource management on your own criteria and application
environment. The same push-model restriction described in Section 14.3 still
exists, however, so your routines need to be Galaxy aware, possibly using shared
memory to coordinate their operations.

$CPU_TRANSITION[W] is an OpenVMS system service available to manage
CPUs. $CPU_TRANSITION[W] changes the current processing state of a CPU in

14–2 CPU Reassignment

the configure set of the current system or an unassigned CPU in an OpenVMS
Galaxy configuration.

14.5 Reassignment Faults

CPU reassignment can fail or be blocked for several reasons. Because the GCU
buries its management actions in SYSMAN or DCL scripts, it may not always
identify and report the reasons for a reassignment fault. The GCU does perform
certain checks before allowing reassignment actions in order, for example,
to prevent attempts to reassign the primary CPU. Other reasons exist for
reassignment faults that can only be detected by the operating system or console
firmware. For example, if the operating system detects a fault attempting to
reassign a CPU that currently has process affinity or Fast Path duties, a DCL
message is displayed on both the console and the users terminal.

The Galaxy APIs for reassignment are capable of reporting most faults to the
caller. However, even using the reassignment services, the console may reject a
reassignment because of hardware platform dependencies not readily visible to
the operating system.

CPU Reassignment 14–3

15
DCL Commands and Lexical Functions

This chapter lists the related DCL commands and lexical functions, and provides
usage examples.

For additional information, refer to the OpenVMS DCL Dictionary.

15.1 DCL Commands

The following tables describe the DCL commands.

Table 15–1: CPU-Related DCL Commands
Command Qualifier Description

SET CPU /[NO]AUTO_START Sets or clears the instance-specific autostart
flag for the specified CPUs.

/[NO]FAILOVER Defines or removes any instance-specific
failover relationship for the specified CPUs.

/MIGRATE Transfers ownership of the CPU from the
current instance to another soft partition.

/POWER Turns the power on or off in one or more
CPU slots. Valid options are ON and OFF.

/REFRESH Examines and updates the OpenVMS
context for the specified CPU or CPUs,
using the hardware configuration tree.

/OVER-
RIDE_CHECKS

Bypasses the series of checks that determine
whether the specified processor is eligible
for removal if the SET CPU command is
being used to remove the CPU from the
active set.

/START Initiates a request for the specified CPU
to join the OpenVMS active set if it is not
already there.

SHOW CPU /ACTIVE_SET Selects as the subject of the display only
those processors that are members of the
system’s active set.

/CONFIGURE_SET Selects as the subject of the display only
those processors that are members of
the system’s configure set - those that
are actively owned and controlled by the
current instance.

DCL Commands and Lexical Functions 15–1

Table 15–1: CPU-Related DCL Commands (cont.)

Command Qualifier Description

/POTENTIAL_SET Selects as the subject of the display only
those processors that are members of the
system’s potential set - those CPUs in
the hard partition that meet the current
instance’s requirements to join its active
set. Inclusion in this set does not imply
that the CPU is (or ever will be) owned by
the current instance. The potential set only
describes those physically existing CPUs
that currently meet the instance-specific
hardware and software compatibility
constraints, should they ever become
available.

/STANDBY_SET Selects as the subject of the display only
those processors that are members of the
system’s standby set - those CPUs in the
hard partition that are not currently owned
by soft partitions and may be available for
ownership by the current instance.

/SYSTEM Displays platform-specific hardware
information relating to the current
instance.

START/CPU /POWER[=ON] Powers on the CPU prior to bringing the
CPU into the active set.

STOP/CPU /MIGRATE Transfers ownership of the CPU from the
current instance to another soft partition.

/POWER=OFF Powers down the CPU after it is removed
from the active set.

Table 15–2: RAD-Related DCL Commands
Command Description

INITIALIZE/RAD=n Specifies the RAD number on which to run
batch jobs assigned to the queue.

SET ENTRY/RAD=n Specifies the RAD number on which the
submitted batch job is to execute.

SET PROCESS/RAD=HOME=n Changes the home RAD of a process.

SET QUEUE/RAD=n Specifies the RAD number on which to run
batch jobs assigned to the queue.

SHOW PROCESS/RAD Displays the home RAD.

START QUEUE/RAD=n Specifies the RAD number on which to run
batch jobs assigned to the queue.

SUBMIT/RAD=n Specifies the RAD number on which the
submitted batch job is to execute.

15–2 DCL Commands and Lexical Functions

Table 15–3: Other DCL Commands
Command Description

CONFIGURE GALAXY Invokes the Galaxy Configuration Utility
(GCU) to monitor, display, and interact with
an OpenVMS Galaxy system.

INSTALL/LIST Returns the Galaxywide sections as well as
the standard global sections.

SHOW MEMORY/PHYSICAL Displays the uses of memory by the system.

15.2 DCL Lexical Functions

This section describes related DCL lexical functions.

The following tables describe the F$GETSYI and F$GETJPI DCL lexical function
item codes.

Table 15–4: Galaxy F$GETSYI Item Codes
Item Code Type Description

GLX_MAX_MEMBERS Integer Returns the maximum count of instances that
may join the current Galaxy configuration.

GLX_FORMATION String Returns a time-stamp string when the Galaxy
configuration, of which this instance is a member,
was created.

GLX_TERMINATION String Returns a time-stamp string when the Galaxy
configuration, of which this instance last was a
member, was terminated.

GLX_MBR_NAME String Returns a string indicating the names which are
known in the Galaxy membership.

GLX_MBR_MEMBER Integer Returns a 64-byte integer. Each 8 bytes represents
a Galaxy member, listed from 7 to 0. The value is
1 if the instance is currently a member, 0 if not
a member.

Table 15–5: Partitioning F$GETSYI Item Codes
Item Code Type Description

HP_ACTIVE_CPU_CNT Integer Returns the count of CPUs in the hard
partition that are not currently in firmware
console mode. For OpenVMS this implies that
the CPU is in, or in the process of joining, the
active set in one of the instances in the hard
partition.

HP_ACTIVE_SP_CNT Integer Returns the count of active operating system
instances currently executing within the hard
partition.

HP_CONFIG_SP_CNT Integer Returns the maximum count of soft partitions
within the current hard partition. This count
does not imply that an operating system
instance is currently running within any
given soft partition.

HP_CONFIG_SBB_CNT Integer Returns a count of the existing system
building blocks within the current hard
partition.

DCL Commands and Lexical Functions 15–3

Table 15–6: SMP F$GETSYI Item Codes
Item Code Type Description

ACTIVE_CPU_MASK Integer Returns a value that represents a CPU-indexed
bitvector. When a particular bit position is
set, the processor with that CPU ID value is
a member of the instance’s active set - those
currently participating in the OpenVMS SMP
scheduling activities.

AVAIL_CPU_MASK Integer Returns a value that represents a CPU-indexed
bitvector. When a particular bit position is
set, the processor with that CPU ID value is a
member of the instance’s configure set - those
owned by the partition and controlled by the
issuing instance.

POTEN-
TIAL_CPU_MASK

Integer Returns a value that represents a CPU-indexed
bitvector. When a particular bit position is
set, the processor with that CPU ID value is
a member of the instance’s potential set. A
CPU in the potential set implies that it could
actively join the VMS active set for this instance
if it is ever owned by it. To meet this rule the
CPU’s characteristics must match hardware and
software compatibility rules defined particularly
for that instance.

POWERED_CPU_MASK Integer Returns a value that represents a CPU-indexed
bitvector. When a particular bit position is
set, the processor with that CPU ID value
is a member of the instance’s powered set -
those CPUs physically existing within the hard
partition and powered up for operation.

PRESENT_CPU_MASK Integer Returns a value that represents a CPU-indexed
bitvector. When a particular bit position is
set, the processor with that CPU ID value is
a member of the instance’s present set - those
CPUS physically existing within the hard
partition.

CPUCAP_MASK String Returns a list of hexadecimal values, separated
by commas and indexed by CPU ID. Each
individual value represents a bitvector; when
set, the corresponding user capability is enabled
for that CPU.

PRIMARY_CPUID Integer Returns the CPU ID of the primary processor for
this OpenVMS instance.

MAX_CPUS Integer Returns the maximum number of CPUs that
could be recognized by this instance.

CPU_AUTOSTART Integer Returns a list of zeroes and ones, separated
by commands and indexed by CPU ID. Any
entry with a value of one indicates that specific
CPU will be brought into the VMS active set
if it transitions into the current instance from
outside, or is powered up while already owned.

CPU_FAILOVER Integer Returns list of numeric partition IDs, separated
by commas and indexed by CPU ID, that define
the destination of the processor if the current
instance should crash.

15–4 DCL Commands and Lexical Functions

Table 15–6: SMP F$GETSYI Item Codes (cont.)

Item Code Type Description

POTENTIALCPU_CNT Integer The count of CPUs in the hard partition that are
members of the potential set for this instance.
A CPU in the potential set implies that it could
actively join the VMS active set for this instance
if it is ever owned by it. To meet this rule the
CPU’s characteristics must match hardware and
software compatibility rules defined particularly
for that instance.

PRESENTCPU_CNT Integer The count of CPUs in the hard partition that
physically reside in a hardware slot.

POWEREDCPU_CNT Integer The count of CPUs in the hard partition that are
physically powered up.

Table 15–7: RAD F$GETJPI Item Code
Item Code Type Description

HOME_RAD Integer Home resource affinity domain (RAD).

Table 15–8: RAD F$GETSYI Item Codes
Item Code Type Description

RAD_CPUS Integer Returns list of RAD,CPU pairs, separated by
commas.

RAD_MEMSIZE Integer Returns list of RAD,PAGES pairs, separated
by commas.

RAD_MAX_RADS Integer Returns the maximum number of RADS
possible on this platform. The value is always
8 (regardless of number of quad building
blocks (QBBs) physically present).

RAD_SHMEMSIZE Integer Returns list of RAD,PAGES pairs, separated
by commas.

15.3 DCL Command Examples

The following DCL commands are useful for managing an OpenVMS Galaxy:

• STOP/CPU/MIGRATE

• SHOW CPU

• SET CPU

• SHOW MEMORY

• Lexical functions

• INSTALL LIST

• INSTALL ADD

• CONFIGURE GALAXY

These commands are described in the following sections.

DCL Commands and Lexical Functions 15–5

15.3.1 CPU Commands

CPUs are assignable resources in an OpenVMS Galaxy. You can assign
CPUs using either the Physical Structure chart (see Section 12.4.2) or the
STOP/CPU/MIGRATE command (Section 15.3.1.1).

15.3.1.1 STOP/CPU/MIGRATE

The STOP/CPU/MIGRATE command transfers ownership of the CPU from the
current instance to another soft partition.

For example, enter:

$ STOP/CPU/MIGRATE=GLXSYS 4

In this example, GLXSYS can be an instance name or a partition ID value. No
operating system is required to be running at the target.

The following message is displayed at the terminal:

%SYSTEM-I-CPUSTOPPING, trying to stop CPU 4 after it reaches quiescent
state

The source console displays:

%SMP-I-STOPPED, CPU #04 has been stopped.

The destination console displays:

%SMP-I-SECMSG, CPU #04 message: P04>>>START
%SMP-I-CPUTRN, CPU #04 has joined the active set.

15.3.1.2 SHOW CPU

The SHOW CPU command displays information about the status, characteristics,
and capabilities of the specified processors. For example:

$ show cpu

System: GLXSYS, Compaq AlphaServer GS320 6/731

CPU ownership sets:
Active 0-31
Configure 0-31

CPU state sets:
Potential 0-31
Autostart 0-31
Powered Down None
Failover None

$ show cpu/system

System: GLXSYS, Compaq AlphaServer GS320 6/731

SMP execlet = 2 : Enabled : Full checking.
Config tree = Version 6
Primary CPU = 0
HWRPB CPUs = 32
Page Size = 8192
Revision Code =
Serial Number = BUDATEST
Default CPU Capabilities:

System: QUORUM RUN
Default Process Capabilities:

15–6 DCL Commands and Lexical Functions

System: QUORUM RUN

CPU ownership sets:
Active 0-31
Configure 0-31

CPU state sets:
Potential 0-31
Autostart 0-31
Powered Down None
Failover None

15.3.1.3 SET CPU

The SET CPU command changes the user capabilities associated with the specified
CPUs.

In the following commands, n represents the CPU number, a comma-separated list
of CPUs, or the /ALL qualifier.

• SET CPU n/FAILOVER=y

Establishes instance-specific failover relationships for each CPU in the
instance’s potential set. When the instance crashes, CPUs with a failover target
other than the current instance will be assigned or migrated to that target.

y is the name of an instance or a physical partition ID within the current hard
partition.

• SET CPU n/NOFAILOVER

Removes any instance-specific failover relationships for the specified CPUs.

• SET CPU n/AUTO_START

Sets or clears the instance-specific autostart flag for the specified CPUs.

When autostart is enabled, that CPU will join the OpenVMS active set when
it is assigned or migrated into the partition. The CPU will also autostart if
a power-up transition is completed while the CPU is owned by the issuing
instance.

• SET CPU n/NOAUTO_START

Clears the instance-specific autostart flag for the specified CPUs.

15.3.2 SHOW MEMORY

The SHOW MEMORY command displays the uses of memory by the system. For
example:

$ SHOW MEMORY/PHYSICAL

System Memory Resources on 5-OCT-2001 20:50:19.03

Physical Memory Usage (pages): Total Free In Use Modified
Main Memory (2048.00Mb) 262144 228183 31494 2467

Of the physical pages in use, 11556 pages are permanently allocated to OpenVMS.

$ SHOW MEMORY/PHYSICAL

System Memory Resources on 5-OCT-2001 07:55:14.68

Physical Memory Usage (pages): Total Free In Use Modified
Private Memory (512.00Mb) 65536 56146 8875 515
Shared Memory (1024.00Mb) 131072 130344 728

Of the physical pages in use, 6421 pages are permanently allocated to OpenVMS.
$

DCL Commands and Lexical Functions 15–7

15.3.3 Lexical Function Example

A lexical function is a function that returns information about character strings
and attributes of the current process. The following command procedure uses
the F$GETSYI lexical function to create a command procedure to show you the
attributes of a Galaxy system:

Lexical Function Example Command Procedure

$ create shoglx.com
$ write sys$output ""$ write sys$output "Instance = ",f$getsyi("scsnode")
$ write sys$output "Platform = ",f$getsyi("galaxy_platform")
$ write sys$output "Sharing Member = ",f$getsyi("galaxy_member")
$ write sys$output "Galaxy ID = ",f$getsyi("galaxy_id")
$ write sys$output "Community ID = ",f$getsyi("community_id")
$ write sys$output "Partition ID = ",f$getsyi("partition_id")
$ write sys$output ""$ exit
$ ^Z

Lexical Function Command Procedure Output

$ @SHOGLX

Instance = COBRA2
Platform = 1
Sharing Member = 1
Galaxy ID = 5F5F30584C47018011D3CC8580F40383
Community ID = 0
Partition ID = 0

$

15.3.4 INSTALL LIST

The INSTALL LIST command now returns all of the Galaxy sections as well as
standard global sections.

15.3.5 INSTALL ADD/WRITABLE

The INSTALL ADD/WRITABLE command now supports Galaxy sections as well
as standard global sections. INSTALL ADD/WRITABLE=GALAXY installs the
specified file as a writable known image in a Galaxy global section.

15.3.6 CONFIGURE GALAXY

The CONFIGURE GALAXY command invokes the Galaxy Configuration Utility
(GCU) to monitor, display, and interact with an OpenVMS Galaxy system. The
GCU requires DECwindows Motif Version 1.2-4 or higher and OpenVMS Alpha
Version 7.2 or higher.

The optional model parameter specifies the location and name of a Galaxy
Configuration Model to load and display. If no model is provided and the system is
running as an OpenVMS Galaxy, the current active configuration is displayed.

If the system is not running as an OpenVMS Galaxy, the GCU will assist the user
in creating a single-instance OpenVMS Galaxy system.

OpenVMS Galaxy Configuration Models are created using either the Galaxy
Configuration Utility (GCU) or the Graphical Configuration Manager (GCM). See
the GCU or GCM online help for more information.

Format:

15–8 DCL Commands and Lexical Functions

CONFIGURE GALAXY [model.gcm]

Parameter:

GALAXY [model.GCM]

Specifies the location and name of a Galaxy configuration model to load and display.

If no model is provided and the system is running as an OpenVMS Galaxy, the
current active configuration is displayed.

Qualifiers:

/ENGAGE

Causes the GCU to engage (load, validate, and activate) the specified OpenVMS
Galaxy Configuration Model without displaying the graphical user interface. After
validation, the specified model becomes the active system configuration.

This qualifier allows system managers to restore the OpenVMS Galaxy system to
a known configuration, regardless of what dynamic resource reassignments may
have occurred since the system was booted. This command can be embedded in
DCL command procedures to automate configuration operations.

/VIEW

When used in conjunction with /ENGAGE and a model parameter, causes the GCU
to load, validate, activate, and display the specified configuration model.

Examples:

$ CONFIGURE GALAXY

Displays the GCU’s graphical user interface. If the system is currently configured
as an OpenVMS Galaxy, the active system configuration is displayed.

$ CONFIGURE GALAXY model.GCM

Displays the GCU’s graphical user interface. The specified OpenVMS Galaxy
Configuration Model is loaded and displayed, but does not become the active
configuration until the user chooses to engage it.

$ CONFIGURE GALAXY/ENGAGE model.GCM

Invokes the GCU command-line interface to engage the specified OpenVMS Galaxy
Configuration Model without displaying the GCU’s graphical user interface.

$ CONFIGURE GALAXY/ENGAGE/VIEW model.GCM

Invokes the GCU command-line interface to engage the specified OpenVMS Galaxy
Configuration Model and display the GCU’s graphical user interface.

DCL Commands and Lexical Functions 15–9

16
Communicating With Shared Memory

This chapter describes the following two OpenVMS internal mechanisms that
use shared memory to communicate between instances in an OpenVMS Galaxy
computing environment:

• Shared Memory Cluster Interconnect (SMCI)

• Local area network (LAN) shared memory device driver

16.1 Shared Memory Cluster Interconnect (SMCI)

The Shared Memory Cluster Interconnect (SMCI) is a System Communications
Services (SCS) port for communications between Galaxy instances. When an
OpenVMS instance is booted as both a Galaxy and an OpenVMS Cluster member,
the SMCI driver is loaded. This SCS port driver communicates with other cluster
instances in the same Galaxy through shared memory. This capability provides one
of the major performance benefits of the OpenVMS Galaxy Software Architecture.
The ability to communicate to another clustered instance through shared memory
provides dramatic performance benefits over traditional cluster interconnects.

The following sections discuss drivers and devices that are used with SMCI.

16.1.1 SYS$PBDRIVER Port Devices

When booting as both a Galaxy and a cluster member, SYS$PBDRIVER is loaded
by default. The loading of this driver creates a device PBAx, where x represents the
Galaxy partition ID. As other instances are booted, they also create PBAx devices.
The SMCI quickly identifies the other instances and creates communications
channels to them. Unlike traditional cluster interconnects, a new device is created
to communicate with the other instances. This device also has the name PBAx,
where x represents the Galaxy partition ID for the instance with which this device
is communicating.

For example, consider an OpenVMS Galaxy that consists of two instances: MILKY
and WAY. MILKY is instance 0 and WAY is instance 1. When node MILKY boots, it
creates device PBA0. When node WAY boots, it creates PBA1. As the two nodes
“find” each other, MILKY creates PBA1 to talk to WAY and WAY creates PBA0
to talk to MILKY.

MILKY WAY

PBA0: PBA1:

PBA1: <-------> PBA0:

16.1.2 Multiple Clusters in a Single Galaxy

SYS$PBDRIVER can support multiple clusters in the same Galaxy. This is done in
the same way that SYS$PEDRIVER allows support for multiple clusters on the
same LAN. The cluster group number and password used by SYS$PEDRIVER
are also used by SYS$PBDRIVER to distinguish different clusters in the same
Galaxy community. If your Galaxy instances are also clustered with other

Communicating With Shared Memory 16–1

OpenVMS instances over the LAN, the cluster group number is set appropriately
by CLUSTER_CONFIG. To determine the current cluster group number, enter:

$ MCR SYMAN
SYSMAN> CONFIGURATION SHOW CLUSTER_AUTHORIZATION
Node: MILKY Cluster group number: 0
Multicast address: xx-xx-xx-xx-xx-xx
SYSMAN>

If you are not clustering over a LAN and you want to run multiple clusters in the
same Galaxy community, then you must set the cluster group number. You must
ensure that the group number and password are the same for all Galaxy instances
that you want to be in the same cluster as follows:

$ MCR SYSMAN
SYSMAN> CONFIGURATION SET CLUSTER_AUTHORIZATION/GROUP_NUMBER=222/PASSWORD=xxxx
SYSMAN>

If your Galaxy instances are also clustering over the LAN, CLUSTER_CONFIG
asks for a cluster group number, and the Galaxy instances use that group number.
If you are not clustering over a LAN, the group number defaults to zero. This
means that all instances in the Galaxy are in the same cluster.

16.1.3 SYSGEN Parameters for SYS$PBDRIVER

In most cases, the default settings for SYS$PBDRIVER should be appropriate;
however, several SYSGEN parameters are provided. Two SYSGEN parameters
control SYS$PBDRIVER: SMCI_PORTS and SMCI_FLAGS.

16.1.3.1 SMCI_PORTS

The SYSGEN parameter SMCI_PORTS controls the initial loading of
SYS$PBDRIVER. This parameter is a bit mask in which bits 0 through 25 each
represent a controller letter. If bit 0 is set, PBAx is loaded; this is the default
setting. If bit 1 is set, PBBx is loaded, and so on all the way up to bit 25,
which causes PBZx to be loaded. For OpenVMS Alpha Version 7.3–1, Compaq
recommends leaving this parameter at the default value of 1.

Loading additional ports allows for multiple paths between Galaxy instances. For
OpenVMS Alpha Version 7.3–1, having multiple communications channels does
not provide any advantages because SYS$PBDRIVER does not support Fast Path.
A future release of OpenVMS will provide Fast Path support for SYS$PBDRIVER.
When Fast Path support is enabled, instances with multiple CPUs can achieve
improved throughput by having multiple communications channels between
instances.

16.1.4 SMCI_FLAGS

The SYSGEN parameter SMCI_FLAGS controls operational aspects of
SYS$PBDRIVER. The only currently defined flag is bit 1. Bit 1 controls whether
or not the port device supports communications with itself. Supporting SCS
communications to itself is primarily used for test purposes. By default, this bit
is turned off and thus support for SCS communication locally is disabled, which
saves system resources. This parameter is dynamic and by turning this bit on, an
SCS virtual circuit should soon form.

The following table shows the values of the bits and the bit mask in the
SMCI_FLAGS parameter.

16–2 Communicating With Shared Memory

Bit Mask Description

0 0 0 = Do not create local communications channels (SYSGEN
default). Local SCS communications are primarily used in test
situations and not needed for normal operations. Leaving this bit
off saves resources and overhead.

1 = Create local communications channels.

1 2 0 = Load SYS$PBDRIVER if booting into both a Galaxy and a
Cluster (SYSGEN Default).
1 = Load SYS$PBDRIVER if booting into a Galaxy.

2 4 0 = Minimal console output (SYSGEN default)
1 = Full console output, SYS$PBDRIVER displays console
messages when creating communication channels and tearing
down communication channels.

16.2 LAN Shared Memory Device Driver

Local area network (LAN) communications between OpenVMS Galaxy instances
are supported by the Ethernet LAN shared memory driver. This LAN driver
communicates to other instances in the same OpenVMS Galaxy system through
shared memory. Communicating with other instances through shared memory
provides performance benefits over traditional LANs.

To load the LAN shared memory driver SYS$EBDRIVER, enter the following
command:

$ MCR SYSMAN
SYSMAN> IO CONN EBA/DRIVER=SYS$EBDRIVER/NOADAPTER

For OpenVMS Version 7.3–1, in order for LAN protocols to automatically start over
this LAN device (EBAn, where n is the unit number), the procedure for loading this
driver should be added to the configuration procedure:

SYS$MANAGER:SYCONFIG.COM.

The LAN driver emulates an Ethernet LAN with frame formats the same as
Ethernet/IEEE 802.3 but with maximum frame size increased from 1518 to 7360
bytes. The LAN driver presents a standard OpenVMS QIO and VCI interface to
applications. All existing QIO and VCI LAN applications should work unchanged.

In a future release, the SYS$EBDRIVER device driver will be loaded automatically.

Communicating With Shared Memory 16–3

17
Shared Memory Programming Interfaces

A shared memory global section maps some amount of memory that can be
accessed on all instances in a sharing community. These objects are also called
Galaxywide shared sections. Each such object has a name, a version, and
protection characteristics.

17.1 Using Shared Memory

Application programs access shared memory by mapping Galaxywide shared
sections. The programming model is the same as for standard OpenVMS global
sections; that is, you create, map, unmap, and delete them on each instance where
you want to use them. Some shared memory global section characteristics are:

• Pages start out as demand zero with preallocated shared PFNs.

• Pages are not counted against your working set.

• Once the page is valid in your process’ page table, it stays valid until it is
deleted; shared memory section pages are never paged to disk.

• You must create the shared section on each instance where you want to access
shared memory.

• Sections can be temporary or permanent.

• Sections can be group or system global sections.

• Galaxywide shared sections use a different name space than traditional global
sections.

• Section versions specified in the ident_64 field are validated throughout the
Galaxy.

• Only one shared section with a given name and UIC group can exist in a
sharing community. This is different from traditional global sections, in which
multiple versions can coexist.

• The SHMEM privilege is required to create a shared memory section.

From a programmer’s point of view, shared memory global sections are similar to
memory resident sections. You use the same system services to create Galaxywide
shared sections that you would use to create memory resident sections. Setting the
flag SEC$M_SHMGS lets the service operate on a shared memory global section.

In contrast to memory resident sections, the Reserved Memory Registry is not used
to allocate space for Galaxywide sections. The SYSMAN RESERVE commands
affect only node-private memory. Shared memory is not used for normal OpenVMS
paging operations and does not need to be reserved.

There is also no user interface to specify whether shared page tables should be
created for Galaxywide sections. Instead, the creation of shared page tables for
Galaxywide sections is tied to the section size. As of OpenVMS Version 7.2, shared
page tables are created for sections of 128 pages (1 MB) or more. Galaxywide
shared page tables are shared between all Galaxy instances.

Shared Memory Programming Interfaces 17–1

17.2 System Services

The following sections describe new and changed system services that support
shared memory global sections.

17.2.1 Enhanced Services

The following system services have been enhanced to recognize the new shared
memory global section flag SEC$M_SHMGS:

• SYS$CRMPSC_GDZRO_64

• SYS$CREATE_GDZRO

• SYS$MGBLSC_64

• SYS$DGBLSC

The following system services have been enhanced to work with shared memory,
but no interfaces were changed:

• SYS$DELTVA

• SYS$DELTVA_64

• SYS$CREATE_BUFOBJ

• SYS$CREATE_BUFOBJ_64

• SYS$DELETE_BUFOBJ

17.2.2 New Section Flag SEC$M_READ_ONLY_SHPT

The new section flag SEC$M_READ_ONLY_SHPT is recognized by the
SYS$CREATE_GDZRO and SYS$CRMPSC_GDZRO_64 services. When this bit is
set, it directs the system to create shared page tables for the sections that allow
read access only. This feature is particularly useful in an environment where a
memory resident or Galaxy shared section is used by many readers but only a
single writer.

When you map a Galaxy shared section or a memory resident section that has an
associated shared page table section, you have the following options for accessing
data:

Shared Page Tables Read Only Read and Write

None created Do not set the
SEC$M_WRT flag in
the map request.
Private page tables are
always used, even if you
specify a shared page
table region into which
to map the section.

Set the SEC$M_WRT flag in the map request.
Private page tables are used, even if you
specify a shared page table region into which
to map the section.

17–2 Shared Memory Programming Interfaces

Shared Page Tables Read Only Read and Write

Write access Do not set the
SEC$M_WRT flag in
the map request.
Ensure that private page
tables are used. Do not
specify a shared page
table region into which
to map the section. If
you do, the error status
SS$_IVSECFLG is
returned.

Set the SEC$M_WRT flag in the map request.
The shared page table section is used for
mapping if you specify a shared page table
region into which to map the section.

Read access Do not set the
SEC$M_WRT flag in
the map request. The
shared page table section
is used for mapping if
you specify a shared
page table region into
which to map the section.

Set the SEC$M_WRT flag in the map request.
Ensure that private page tables is used. Do
not specify a shared page table region into
which to map the section. If you do, the error
status SS$_IVSECFLG is returned.

________________________ Notes ________________________

Shared page tables for Galaxy shared sections are also implemented
as Galaxy shared sections. This implies that they allow either
read access only on all OpenVMS instances connected to this
section or read and write access on all instances. The setting of the
SEC$M_READ_ONLY_SHPT flag as requested by the first instance to
create the section is used on all instances.

Using the SYS$CRMPSC_GDZRO_64 service always implies that the
SEC$M_WRT flag is set and that you want to map the section for
writing. If you want to use this service to create a section with shared
page tables for read-only access, you must use private page tables
and you cannot specify a shared page table region into which to map
the section.

17.3 Galaxywide Global Sections

The SHMEM privilege is required to create an object in Galaxy shared memory.
The right to map to an existing section is controlled through normal access control
mechanisms. SHMEM is not needed to map an existing section. Note that the
VMS$MEM_RESIDENT_USER identifier, which is needed to create an ordinary
memory resident section, is not required for Galaxywide sections.

Creating and mapping Galaxywide memory sections is accomplished through the
same services used to create memory resident sections. The following services
now recognize the SEC$M_SHMGS flag:

SYS$CREATE_GDZRO

SYS$CRMPSC_GDZRO_64

SYS$MGBLSC_64

SYS$DGBLSC

SYS$CREATE_GDZRO and SYS$CRMPSC_GDZRO_64 can also return new
status codes.

Shared Memory Programming Interfaces 17–3

Status Code Description

SS$_INV_SHMEM Shared memory is not valid.

SS$_INSFRPGS Insufficient free shared pages or private pages.

SS$_NOBREAK A Galaxy lock is held by another node and was not broken.

SS$_LOCK_TIMEOUT A Galaxy lock timed out.

The INSTALL LIST/GLOBAL and SHOW MEMORY commands are also aware
of Galaxywide sections.

Galaxywide sections are using their own name space. Just as you could always
use the same name to identify system global sections and group global sections for
various owner UICs, you can now also have Galaxywide system global sections and
Galaxywide group global sections all with the same name.

Galaxywide sections also have their own security classes:

GLXSYS_GLOBAL_SECTION

GLXGRP_GLOBAL_SECTION

These security classes are used with the $GET_SECURITY and $SET_SECURITY
system services, and DCL commands SET/SHOW SECURITY.

These new security classes are only valid in a Galaxy environment. They are not
recognized on a non-Galaxy node.

You can only retrieve and affect security attributes of Galaxywide global sections
if they exist on your sharing instance.

Audit messages for Galaxywide sections look like this:

%%%%%%%%% OPCOM 20-MAR-2002 10:44:43.71 %%%%%%%%
(from node GLX1 at 20-MAR-2002 10:44:43.85)
Message from user AUDIT$SERVER on GLX1
Security alarm (SECURITY) on GLX1, system id: 19955
Auditable event: Object creation
Event information: global section map request
Event time: 20-MAR-2002 10:44:43.84
PID: 2040011A
Process name: ANDY
Username: ANDY
Process owner: [ANDY]
Terminal name: RTA1:
Image name: MILKY$DKA100:[ANDY]SHM_MAP.EXE;1
Object class name: GLXGRP_GLOBAL_SECTION
Object name: [47]WAY____D99DDB03_0$MY_SECTION
Secondary object name: <Galaxywide global section >
Access requested: READ,WRITE
Deaccess key: 8450C610
Status: %SYSTEM-S-CREATED, file or section did not exist;

has been created

Note the “Object name” field: the object name displayed here uniquely identifies
the section in the OpenVMS Galaxy. The fields are as follows:

[47] (only for group global sections) Identifies the UIC group of the
section creator.

WAY____D99DDB03_0$An identifier for the sharing community.

MY_SECTION The name of the section as specified by the user.

17–4 Shared Memory Programming Interfaces

The user can only specify the section name and class for requests to set or show
the security profile. The UIC is always obtained from the current process and
the community identifier is obtained from the community in which the process
executes.

The output for a Galaxywide system global section differs only in the fields “Object
class name” and “Objects name.” The object name for this type of section does
not include a group identification field:

Object class
name:

GLXSYS_GLOBAL_SECTION

Object name: WAY____D99DDB03_0$SYSTEM_SECTION

________________ Important Security Notes ________________

Security attributes for a Galaxywide memory section must appear
identical to a process, no matter on what instance it is executing.

This can be achieved by having all instances participating in this
sharing community also participate in a “homogeneous” OpenVMS
Cluster, where all nodes share the security-related files:

SYSUAF.DAT, SYSUAFALT.DAT (system authorization file)

RIGHTSLIST.DAT (rights database)

VMS$OBJECTS.DAT (objects database)

In particular, automatic propagation of protection changes
to a Galaxywide section requires that the same physical file
(VMS$OBJECTS.DAT) is used by all sharing instances.

If your installation does not share these files throughout the Galaxy,
the creator of a Galaxywide shared section must ensure that the section
has the same security attributes on each instances. This may require
manual intervention.

Shared Memory Programming Interfaces 17–5

18
OpenVMS Galaxy Device Drivers

This chapter describes OpenVMS Alpha Version 7.3 direct-mapped DMA window
information for PCI drivers.

18.1 Direct-Mapped DMA Window Changes

The changes described in this chapter were made in OpenVMS Version 7.2 to
support OpenVMS Galaxy and memory holes. The change involves moving the
direct-mapped DMA window away from physical memory location 0. This chapter
should provide enough background and information for you to update your driver if
you have not yet updated it to OpenVMS Version 7.2 or later.

Note that this chapter does not cover the bus-addressable pool (BAP).

18.2 How PCI Direct-Mapped DMA Works Prior to OpenVMS
Version 7.2

On all PCI-based machines, the direct-mapped DMA window begins at (usually) 1
GB in PCI space and covers physical memory beginning at 0 for 1 GB as shown in
Figure 18–1.

Figure 18–1: PCI-Based DMA

PCI

VM-0304A-AI

Memory

1 gigabyte (IOC$K_DIRECT_DMA_BASE)

2 gigabyte-1

IOC$K_DIRECT_DMA_SIZE

0

1 gigabyte

Typically, drivers compare their buffer addresses against the length of the window
returned by calling IOC$NODE_DATA with the IOC$K_DIRECT_DMA_SIZE
function code. This assumes that the window on the memory side starts at zero.
Another popular method for determining whether map registers are necessary
involves looking at MMG$GL_MAXPFN. This is also not likely to work correctly in
OpenVMS Version 7.3.

For a much better picture and explanation, see the Writing OpenVMS Device Alpha
Drivers in C book.

18.3 How PCI Direct-Mapped DMA Works in Current Versions
of OpenVMS

Galaxy and memory-hole considerations force OpenVMS to change the placement
of the direct-mapped DMA window, as shown in Figure 18–2.

OpenVMS Galaxy Device Drivers 18–1

Figure 18–2: OpenVMS DMA

PCI

VM-0305A-AI

Memory

1 gigabyte (IOC$K_DDMA_BASE_BA)

2 gigabyte-1

IOC$K_DDMA_WIN_SIZE

IOC$K_DIRECT_DMA_BASE_PA

It is unknown from the driver’s perspective where in memory the base of the
direct-mapped DMA window will be. Simply comparing a buffer address against
the length of the window is not enough to determine whether a buffer is within the
direct-mapped DMA window. Also, comparing against MMG$GL_MAXPFN will no
longer guarantee that all of the pool is within the window. The correct cell to check
is MMG$GL_MAX_NODE_PFN. Additionally, alignment concerns may require that
a slightly different offset be incorporated into physical bus address calculations.

18.4 IOC$NODE_DATA Changes to Support Nonzero
Direct-Mapped DMA Windows

To alleviate this problem, new function codes have been added to
IOC$NODE_DATA. Here is a list of all the codes relating to direct-mapped DMA,
and a description of what the data means.

Code Description

IOC$K_DIRECT_DMA_BASE This is the base address on the PCI side, or bus
address. There is a synonym for this function code
called IOC$K_DDMA_BASE_BA. A 32-bit result
will be returned.

IOC$DIRECT_DMA_SIZE On non-Galaxy machines, this returns the size of the
direct-mapped DMA window (in megabytes). On a
system where the direct-mapped DMA window does
not start at zero, the data returned is zero, implying
that no direct-mapped DMA windows exist. A 32-bit
result will be returned.

IOC$K_DDMA_WIN_SIZE On all systems, this will always return the size of
the direct-mapped DMA window (in megabytes). A
32-bit result will be returned.

IOC$K_DIRECT_DMA_BASE_PA This is the base physical address in memory of the
direct-mapped DMA window. A 32-bit result will
be returned.

The address returned with the IOC$K_DIRECT_DMA_BASE_PA code is necessary
to compute the offset. (This usually used to be the 1 Gb difference between the
memory PA and the bus address.) The offset is defined as the signed difference
between the base bus address and the base memory address. This is now not
necessarily 1 gigabyte.

18–2 OpenVMS Galaxy Device Drivers

A
OpenVMS Galaxy CPU Load Balancer

Program

This appendix contains an example program of a privileged-code application that
dynamically reassigns CPU resources among instances in an OpenVMS Galaxy.

A.1 CPU Load Balancer Overview
The OpenVMS Galaxy CPU Load Balancer program is a privileged application that
dynamically reassigns CPU resources among instances in an OpenVMS Galaxy.

The program must be run on each participating instance. Each image creates,
or maps to, a small shared memory section and periodically posts information
regarding the depth of that instance’s COM queues. Based upon running averages
of this data, each instance determines the most and the least busy instances. If
these factors exist for a specified duration, the least busy instance having available
secondary processors reassigns one of its processors to the most busy instance,
thereby effectively balancing processor usage across the OpenVMS Galaxy. The
program provides command-line arguments to allow tuning of the load-balancing
algorithm. The program is admittedly shy on error handling.

This program uses the following OpenVMS Galaxy system services:

Service Description

SYS$CPU_TRANSITION CPU reassignment

SYS$CRMPSC_GDZRO_64 Shared memory creation

SYS$SET_SYSTEM_EVENT OpenVMS Galaxy event notification

SYS$*_GALAXY_LOCK_* OpenVMS Galaxy locking

Because OpenVMS Galaxy resources are always reassigned via a push model,
where only the owner instance can release its resources, one copy of this process
must run on each instance in the OpenVMS Galaxy.

This program can be run only in an OpenVMS Version 7.2 or later multiple-instance
Galaxy.

A.1.1 Required Privileges

The CMKRNL privilege is required to count CPU queues. The SHMEM privilege is
required to map shared memory.

A.1.2 Build and Copy Instructions

Compile and link the example program as described in the following section, or
copy the precompiled image found in SYS$EXAMPLES:GCU$BALANCER.EXE to
SYS$COMMON:[SYSEXE]GCU$BALANCER.EXE.

If your OpenVMS Galaxy instances use individual system disks, you need to
perform this action for each instance.

If you change the example program, compile and link it as follows:

OpenVMS Galaxy CPU Load Balancer Program A–1

$ CC GCU$BALANCER.C+SYS$LIBRARY:SYS$LIB_C/LIBRARY
$ LINK/SYSEXE GCU$BALANCER

A.1.3 Startup Options

You must establish a DCL command for this program. Compaq has provided a
sample command table file for this purpose. To install the new command, enter
the following:

$ SET COMMAND/TABLE=SYS$LIBRARY:DCLTABLES -
_$ /OUT=SYS$COMMON:[SYSLIB]DCLTABLES GCU$BALANCER.CLD

This command inserts the new command definition into DCLTABLES.EXE in your
common system directory. The new command tables take effect when the system is
rebooted. If you would like to avoid a reboot, enter the following:

$ INSTALL REPLACE SYS$COMMON:[SYSLIB]DCLTABLES.EXE

After this command, you need to log out and log back in to use the command from
any active processes. Alternatively, if you would like to avoid logging out, enter the
following from each process you would like to run the balancer from:

$ SET COMMAND GCU$BALANCER.CLD

Once your command has been established, you may use the various command-line
parameters to control the balancer algorithm.

$ CONFIGURE BALANCER[/STATISTICS] x y time

In this command, x is the number of load samples to take, y is the number of
queued processes required to trigger resource reassignment, and time is the delta
time between load sampling.

The /STATISTICS qualifier causes the program to display a continuous status line.
This is useful for tuning the parameters. This output is not visible if the balancer
is run detached, as is the case if it is invoked via the GCU. The /STATISTICS
qualifier is intended to be used only when the balancer is invoked directly from
DCL in a DECterm window. For example:

$ CONFIG BAL 3 1 00:00:05.00

This starts the balancer, which samples the system load every 5 seconds. After
three samples, if the instance has one or more processes in the COM queue, a
resource (CPU) reassignment occurs, giving this instance another CPU.

A.1.4 Starting the Load Balancer from the GCU

The GCU provides a menu item for launching SYS$SYSTEM:GCU$BAL-
ANCER.EXE and a dialog for altering the balancer algorithm. These features
only work if the balancer image is properly installed as described the following
paragraphs.

To use the GCU-resident balancer startup option, you must:

• Compile, link, or copy the balancer image as previously described.

• Invoke the GCU using the following command:

$ CONFIGURE GALAXY

You might need to set your DECwindows display to a suitably configured
workstation or PC.

• Choose the CPU Balancer item from the Galaxy menu.

A–2 OpenVMS Galaxy CPU Load Balancer Program

• Select appropriate values for your system. This can take some testing. By
default, the values are set aggressively so that the balancer action can be
readily observed. If your system is very heavily loaded, you need to increase
the values accordingly to avoid excessive resource reassignment. The GCU
does not currently save these values, so you may want to write them down
once you are satisfied.

• Select the instances you want to have participate, then select the Start function,
then click on OK. The GCU should launch the process GCU$BALANCER on
all selected instances. You might want to verify that these processes have
been started.

A.1.5 Shutdown Warning

In an OpenVMS Galaxy, no process may have shared memory mapped on an
instance when it leaves the Galaxy—for example, during a shutdown. To stop the
process if the GCU$BALANCER program is run from a SYSTEM UIC, you must
modify SYS$MANAGER:SYSHUTDWN.COM. Processes in the SYSTEM UIC
group are not terminated by SHUTDWN.COM when shutting down or rebooting
OpenVMS. If a process still has shared memory mapped when an instance leaves
the Galaxy, the instance crashes with a GLXSHUTSHMEM bugcheck.

To make this work, SYS$MANAGER:SYSHUTDWN.COM must stop the process
as shown in the following example. Alternatively, the process can be run under a
suitably privileged, non-SYSTEM UIC.

** SYSHUTDWN.COM EXAMPLE - Paste into SYS$MANAGER:SYSHUTDWN.COM
**
** $!
** $! If the GCU$BALANCER image is running, stop it to release shmem.
** $!
** $ procctx = f$context("process",ctx,"prcnam","GCU$BALANCER","eql")
** $ procid = f$pid(ctx)
** $ if procid .NES. "" then $ stop/id=’procid’

You could also use a $ STOP GCU$BALANCER statement.

A.2 Example Program
/*
** COPYRIGHT (c) 1998 BY COMPAQ COMPUTER CORPORATION ALL RIGHTS RESERVED.
**
** THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
** ONLY IN ACCORDANCE OF THE TERMS OF SUCH LICENSE AND WITH THE
** INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
** COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
** OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
** TRANSFERRED.
**
** THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
** AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY COMPAQ COMPUTER
** CORPORATION.
**
** COMPAQ ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
** SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY COMPAQ OR DIGITAL.
**
**===
** WARNING - This example is provided for instructional and demo
** purposes only. The resulting program should not be
** run on systems which make use of soft-affinity
** features of OpenVMS, or while running applications

OpenVMS Galaxy CPU Load Balancer Program A–3

** which are tuned for precise processor configurations.
** We are continuing to explore enhancements such as this
** program which will be refined and integrated into
** future releases of OpenVMS.
**===
**
** GCU$BALANCER.C - OpenVMS Galaxy CPU Load Balancer.
**
** This is an example of a privileged application which dynamically
** reassigns CPU resources among instances in an OpenVMS Galaxy. The
** program must be run on each participating instance. Each image will
** create, or map to, a small shared memory section and periodically
** post information regarding the depth of that instances’ COM queues.
** Based upon running averages of this data, each instance will
** determine the most, and least busy instance. If these factors
** exist for a specified duration, the least busy instance having
** available secondary processors, will reassign one of its processors
** to the most busy instance, thereby effectively balancing processor
** usage across the OpenVMS Galaxy. The program provides command line
** arguments to allow tuning of the load balancing algorithm.
** The program is admittedly shy on error handling.
**
** This program uses the following OpenVMS Galaxy system services:
**
** SYS$CPU_TRANSITION - CPU reassignment
** SYS$CRMPSC_GDZRO_64 - Shared memory creation
** SYS$SET_SYSTEM_EVENT - OpenVMS Galaxy event notification
** SYS$*_GALAXY_LOCK_* - OpenVMS Galaxy locking
**
** Since OpenVMS Galaxy resources are always reassigned via a "push"
** model, where only the owner instance can release its resources,
** one copy of this process must run on each instance in the OpenVMS
** Galaxy.
**
** ENVIRONMENT: OpenVMS V7.2 Multiple-instance Galaxy.
**
** REQUIRED PRIVILEGES: CMKRNL required to count CPU queues
** SHMEM required to map shared memory
**
** BUILD/COPY INSTRUCTIONS:
**
** Compile and link the example program as described below, or copy the
** precompiled image found in SYS$EXAMPLES:GCU$BALANCER.EXE to
** SYS$COMMON:[SYSEXE]GCU$BALANCER.EXE
**
** If your OpenVMS Galaxy instances utilize individual system disks,
** you will need to do the above for each instance.
**
** If you change the example program, compile and link it as follows:
**
** $ CC GCU$BALANCER.C+SYS$LIBRARY:SYS$LIB_C/LIBRARY
** $ LINK/SYSEXE GCU$BALANCER
**
** STARTUP OPTIONS:
**
** You must establish a DCL command for this program. We have provided a
** sample command table file for this purpose. To install the new
** command, do the following:
**
** $ SET COMMAND/TABLE=SYS$LIBRARY:DCLTABLES -
** /OUT=SYS$COMMON:[SYSLIB]DCLTABLES GCU$BALANCER.CLD
**

A–4 OpenVMS Galaxy CPU Load Balancer Program

** This command inserts the new command definition into DCLTABLES.EXE
** in your common system directory. The new command tables will take
** effect when the system is rebooted. If you would like to avoid a
** reboot, do the following:
**
** $ INSTALL REPLACE SYS$COMMON:[SYSLIB]DCLTABLES.EXE
**
** After this command, you will need to log out, then log back in to
** use the command from any active processes. Alternatively, if you
** would like to avoid logging out, do the following from each process
** you would like to run the balancer from:
**
** $ SET COMMAND GCU$BALANCER.CLD
**
** Once your command has been established, you may use the various
** command line parameters to control the balancer algorithm.
**
** $ CONFIGURE BALANCER{/STATISTICS} x y time
**
** Where: "x" is the number of load samples to take.
** "y" is the number of queued processes required to trigger
** resource reassignment.
** "time" is the delta time between load sampling.
**
** The /STATISTICS qualifier causes the program to display a
** continuous status line. This is useful for tuning the parameters.
** This output is not visible if the balancer is run detached, as is
** the case if it is invoked via the GCU. It is intended to be used
** only when the balancer is invoked directly from DCL in a DECterm
** window.
**
** For example: $ CONFIG BAL 3 1 00:00:05.00
**
** Starts the balancer which samples the system load every
** 5 seconds. After 3 samples, if the instance has one or
** more processes in the COM queue, a resource (CPU)
** reassignment will occur, giving this instance another CPU.
**
** GCU STARTUP:
**
** The GCU provides a menu item for launching SYS$SYSTEM:GCU$BALANCER.EXE
** and a dialog for altering the balancer algorithm. These features will
** only work if the balancer image is properly installed as described
** the the following paragraphs.
**
** To use the GCU-resident balancer startup option, you must:
**
** 1) Compile, link, or copy the balancer image as described previously.
** 2) Invoke the GCU via: $ CONFIGURE GALAXY You may need to set your
** DECwindows display to a suitably configured workstation or PC.
** 3) Select the "CPU Balancer" entry from the "Galaxy" menu.
** 4) Select appropriate values for your system. This may take some
** testing. By default, the values are set aggressively so that
** the balancer action can be readily observed. If your system is
** very heavily loaded, you will need to increase the values
** accordingly to avoid excessive resource reassignment. The GCU
** does not currently save these values, so you may want to write
** them down once you are satisfied.
** 5) Select the instance/s you wish to have participate, then select
** the "Start" function, then press OK. The GCU should launch the
** process GCU$BALANCER on all selected instances. You may want to
** verify these processes have been started.

OpenVMS Galaxy CPU Load Balancer Program A–5

**
** SHUTDOWN WARNING:
**
** In an OpenVMS Galaxy, no process may have shared memory mapped on an
** instance when it leaves the Galaxy, as during a shutdown. Because of
** this, SYS$MANAGER:SYSHUTDWN.COM must be modified to stop the process
** if the GCU$BALANCER program is run from a SYSTEM UIC. Processes in the
** SYSTEM UIC group are not terminated by SHUTDOWN.COM when shutting down
** or rebooting OpenVMS. If a process still has shared memory mapped when
** an instance leaves the Galaxy, the instance will crash with a
** GLXSHUTSHMEM bugcheck.
**
** To make this work, SYS$MANAGER:SYSHUTDWN.COM must stop the process as
** shown in the example below. Alternatively, the process can be run
** under a suitably privileged, non-SYSTEM UIC.
**
** SYSHUTDWN.COM EXAMPLE - Paste into SYS$MANAGER:SYSHUTDWN.COM
**
** $!
** $! If the GCU$BALANCER image is running, stop it to release shmem.
** $!
** $ procctx = f$context("process",ctx,"prcnam","GCU$BALANCER","eql")
** $ procid = f$pid(ctx)
** $ if procid .NES. "" then $ stop/id=’procid’
**
** Note, you could also just do a "$ STOP GCU$BALANCER" statement.
**
** OUTPUTS:
**
** If the logical name GCU$BALANCER_VERIFY is defined, notify the
** SYSTEM account when CPUs are reassigned. If the /STATISTICS
** qualifier is specified, a status line is continually displayed,
** but only when run directly from the command line.
**
** REVISION HISTORY:
**
** 02-Dec-1998 Greatly improved instructions.
** 03-Nov-1998 Improved instructions.
** 24-Sep-1998 Initial code example and integration with GCU.
*/
#include <brkdef>
#include <builtins>
#include <cstdef>
#include <descrip>
#include <glockdef>
#include <ints>
#include <pdscdef>
#include <psldef>
#include <secdef>
#include <ssdef>
#include <starlet>
#include <stdio>
#include <stdlib>
#include <string>
#include <syidef>
#include <sysevtdef>
#include <vadef>
#include <vms_macros>
#include <cpudef>
#include <iosbdef.h>
#include <efndef.h>
/* For CLI */

A–6 OpenVMS Galaxy CPU Load Balancer Program

#include <cli$routines.h>
#include <chfdef.h>
#include <climsgdef.h>

#define HEARTBEAT_RESTART 0 /* Flags for synchronization */
#define HEARTBEAT_ALIVE 1
#define HEARTBEAT_TRANSPLANT 2

#define GLOCK_TIMEOUT 100000 /* Sanity check, max time holding gLock */
#define _failed(x) (!((x) & 1))

$DESCRIPTOR(system_dsc, "SYSTEM"); /* Brkthru account name */
$DESCRIPTOR(gblsec_dsc, "GCU$BALANCER"); /* Global section name */

struct SYI_ITEM_LIST { /* $GETSYI item list format */
short buflen,item;
void *buffer,*length;

};

/* System information and an item list to use with $GETSYI */

static unsigned long total_cpus;
static uint64 partition_id;
static long max_instances = 32;
iosb g_iosb;

struct SYI_ITEM_LIST syi_itemlist[3] = {
{sizeof (long), SYI$_ACTIVECPU_CNT,&total_cpus;, 0},
{sizeof (long), SYI$_PARTITION_ID, &partition_id;,0},
{0,0,0,0}};

extern uint32 *SCH$AQ_COMH; /* Scheduler COM queue address */
unsigned long PAGESIZE; /* Alpha page size */
uint64 glock_table_handle; /* Galaxy lock table handle */

/*
** Shared Memory layout (64-bit words):
** ====================================
** 0 to n-1: Busy count, where 100 = 1 process in a CPU queue
** n to 2n-1: Heartbeat (status) for each instance
** 2n to 3n-1: Current CPU count on each instance
** 3n to 4n-1: Galaxy lock handles for modifying heartbeats
**
** where n = max_instances * sizeof(long).
**
** We assume the entire table (easily) fits in two Alpha pages.
*/

/* Shared memory pointers must be declared volatile */

volatile uint64 gs_va = 0; /* Shmem section address */
volatile uint64 gs_length = 0; /* Shmem section length */
volatile uint64 *gLocks; /* Pointers to gLock handles */
volatile uint64 *busycnt,*heartbeat,*cpucount;

/***/
/* FUNCTION init_lock_tables - Map to the Galaxy locking table and */
/* create locks if needed. Place the lock handles in a shared memory */
/* region, so all processes can access the locks. */
/* */
/* ENVIRONMENT: Requires SHMEM and CMKRNL to create tables. */
/* INPUTS: None. */

OpenVMS Galaxy CPU Load Balancer Program A–7

/* OUTPUTS: Any errors from lock table creation. */
/***/
int init_lock_tables (void)
{

int status,i;
unsigned long sanity;
uint64 handle;
unsigned int min_size, max_size;

/* Lock table names are 15-byte padded values, unique across a Galaxy.*/
char table_name[] = "GCU_BAL_GLOCK ";

/* Lock names are 15-byte padded values, but need not be unique. */
char lock_name[] = "GCU_BAL_LOCK ";

/* Get the size of a Galaxy lock */
status = sys$get_galaxy_lock_size(&min_size,&max_size);
if (_failed(status)) return (status);

/*
** Create or map to a process space Galaxy lock table. We assume
** one page is enough to hold the locks. This will work for up
** to 128 instances.
*/
status = sys$create_galaxy_lock_table(table_name,PSL$C_USER,

PAGESIZE,GLCKTBL$C_PROCESS,0,min_size,&glock_table_handle)
if (_failed(status)) return (status);

/*
** Success case 1: SS$_CREATED
** We created the table, so populate it with locks and
** write the handles to shared memory so the other partitions
** can access them. Only one instance can receive SS$_CREATED
** for a given lock table; all other mappers will get SS$_NORMAL.
*/
if (status == SS$_CREATED)
{

printf ("%%GCU$BALANCER-I-CRELOCK, Creating G-locks\n");
for (i=0; i<max_instances>pdsc$q_entry[0];

sub_addr[1] = sub_addr[0] + PAGESIZE;
if (__PAL_PROBER((void *)sub_addr[0],sizeof(int),PSL$C_USER) != 0)

sub_addr[1] = sub_addr[0];

status = sys$lkwset(sub_addr,locked_code,PSL$C_USER);
if (_failed(status)) exit(status);

}

/***/
/* FUNCTION reassign_a_cpu - Reassign a single CPU to another */
/* instance. */
/* */
/* ENVIRONMENT: Requires CMKRNL privilege. */
/* INPUTS: most_busy_id: partition ID of destination. */
/* OUTPUTS: None. */
/* */
/* Donate one CPU at a time - then wait for the remote instance to */
/* reset its heartbeat and recalculate its load. */
/***/
void reassign_a_cpu(int most_busy_id)
{

int status,i;
static char op_msg[255];

A–8 OpenVMS Galaxy CPU Load Balancer Program

static char iname_msg[1];
$DESCRIPTOR(op_dsc,op_msg);
$DESCRIPTOR(iname_dsc,"");
iname_dsc.dsc$w_length = 0;

/* Update CPU info */

status = sys$getsyiw(EFN$C_ENF,0,0,&syi_itemlist, &g_iosb,0,0);
if (_failed(status)) exit(status);

/* Don’t attempt reassignment if we are down to one CPU */

if (total_cpus > 1)
{
status = sys$acquire_galaxy_lock(gLocks[most_busy_id],GLOCK_TIMEOUT,0);
if (_failed(status)) exit(status);
heartbeat[most_busy_id] = HEARTBEAT_TRANSPLANT;
status = sys$release_galaxy_lock(gLocks[most_busy_id]);
if (_failed(status)) exit(status);

status = sys$cpu_transitionw(CST$K_CPU_MIGRATE,CST$K_ANY_CPU,0,
most_busy_id,0,0,0,0,0,0);

if (status & 1)
{

if (getenv ("GCU$BALANCER_VERIFY"))
{

sprintf(op_msg,
"\n\n*****GCU$BALANCER: Reassigned a CPU to instance %li\n",
most_busy_id);

op_dsc.dsc$w_length = strlen(op_msg);
sys$brkthru(0,&op_dsc,&system_dsc,BRK$C_USERNAME,0,0,0,0,0,0,0);
}
update_cpucount(0); /* Update the CPU count after donating one */

}
}

}

/**/
/* IMAGE ENTRY - MAIN */
/* */
/* ENVIRONMENT: OpenVMS Galaxy */
/* INPUTS: None. */
/* OUTPUTS: None. */
/**/
int main(int argc, char **argv)
{

int show_stats = 0;
long busy,most_busy,nprocs;
int64 delta;
unsigned long status,i,j,k,system_cpus,instances;
unsigned long arglst = 0;
uint64 version_id[2] = {0,1};
uint64 region_id = VA$C_P0;
uint64 most_busy_id,cpu_hndl = 0;

/* Static descriptors for storing parameters. Must match CLD defs */

$DESCRIPTOR(p1_desc,"P1");
$DESCRIPTOR(p2_desc,"P2");
$DESCRIPTOR(p3_desc,"P3");
$DESCRIPTOR(p4_desc,"P4");
$DESCRIPTOR(stat_desc,"STATISTICS");

OpenVMS Galaxy CPU Load Balancer Program A–9

/* Dynamic descriptors for retrieving parameter values */

struct dsc$descriptor_d samp_desc = {0,DSCK_DTYPE_T,DSCK_CLASS_D,0};
struct dsc$descriptor_d proc_desc = {0,DSCK_DTYPE_T,DSCK_CLASS_D,0};
struct dsc$descriptor_d time_desc = {0,DSCK_DTYPE_T,DSCK_CLASS_D,0};

struct SYI_ITEM_LIST syi_pagesize_list[3] = {
{sizeof (long), SYI$_PAGE_SIZE , &PAGESIZE ,0},
{sizeof (long), SYI$_GLX_MAX_MEMBERS,&max_instances,0},
{0,0,0,0}};

/*
** num_samples and time_desc determine how often the balancer should
** check to see if any other instance needs more CPUs. num_samples
** determines the number of samples used to calculate the running
** average, and sleep_dsc determines the amount of time between
** samples.
**
** For example, a sleep_dsc of 30 seconds and a num_samples of 20 means
** that a running average over the last 10 minutes (20 samples * 30 secs)
** is used to balance CPUs.
**
** load_tolerance is the minimum load difference which triggers a CPU
** migration. 100 is equal to 1 process in the computable CPU queue.
*/

int num_samples; /* Number of samples in running average */
int load_tolerance; /* Minimum load diff to trigger reassignment */

/* Parse the CLI */
/* CONFIGURE VERB */

status = CLI$PRESENT(&p1_desc); /* BALANCER */
if (status != CLI$_PRESENT) exit(status);
status = CLI$PRESENT(&p2_desc); /* SAMPLES */
if (status != CLI$_PRESENT) exit(status);
status = CLI$PRESENT(&p3_desc); /* PROCESSES */
if (status != CLI$_PRESENT) exit(status);
status = CLI$PRESENT(&p4_desc); /* TIME */
if (status != CLI$_PRESENT) exit(status);

status = CLI$GET_VALUE(&p2_desc,&samp_desc);
if (_failed(status)) exit(status);
status = CLI$GET_VALUE(&p3_desc,&proc_desc);
if (_failed(status)) exit(status);
status = CLI$GET_VALUE(&p4_desc,&time_desc);
if (_failed(status)) exit(status);
status = CLI$PRESENT(&stat_desc);
show_stats = (status == CLI$_PRESENT) ? 1 : 0;

num_samples = atoi(samp_desc.dsc$a_pointer);
if (num_samples <= 0) num_samples = 3;

load_tolerance = (100 * (atoi(proc_desc.dsc$a_pointer)));
if (load_tolerance <= 0) load_tolerance = 100;

if (show_stats)
printf("Args: Samples: %d, Processes: %d, Time: %s\n",

num_samples,load_tolerance/100,time_desc.dsc$a_pointer);

lockdown(); /* Lock down the cpu_q subroutine */

/* Get the page size and max members for this system */

A–10 OpenVMS Galaxy CPU Load Balancer Program

status = sys$getsyiw(EFN$C_ENF,0,0,&syi_pagesize_list,&g_iosb,0,0);
if (_failed(status)) return (status);

if (max_instances == 0) max_instances = 1;

/* Get our partition ID and initial CPU info */

status = sys$getsyiw(EFN$C_ENF,0,0,&syi_itemlist,&g_iosb,0,0);
if (_failed(status)) return (status);

/* Map two pages of shared memory */

status = sys$crmpsc_gdzro_64(&gblsec_desc,version_id,0,PAGESIZE+PAGESIZE,
®ion_id,0,PSL$C_USER,(SEC$M_EXPREG|SEC$M_SYSGBL|SEC$M_SHMGS),
&gs_va,&gs_length);

if (_failed(status)) exit(status);

/* Initialize the pointers into shared memory */

busycnt = (uint64 *) gs_va;
heartbeat = (uint64 *) gs_va + max_instances;
cpucount = (uint64 *) heartbeat + max_instances;
gLocks = (uint64 *) cpucount + max_instances;

cpucount[partition_id] = total_cpus;

/* Create or map the Galaxy lock table */

status = init_lock_tables();
if (_failed(status)) exit(status);

/* Initialize delta time for sleeping */

status = sys$bintim(&time_desc,δ);
if (_failed(status)) exit(status);

/*
** Register for CPU migration events. Whenever a CPU is added to
** our active set, the routine "update_cpucount" will fire.
*/
status = sys$set_system_event(SYSEVT$C_ADD_ACTIVE_CPU,

update_cpucount,0,0,SYSEVT$M_REPEAT_NOTIFY,&cpu_hndl);
if (_failed(status)) exit(status);

/* Force everyone to resync before we do anything */

for (j=0; j<max_instances; j++)
{

status = sys$acquire_galaxy_lock(gLocks[j],GLOCK_TIMEOUT,0);
if (_failed(status)) exit(status);
heartbeat[j] = HEARTBEAT_RESTART;
status = sys$release_galaxy_lock (gLocks[j]);
if (_failed(status)) exit(status);

}

printf("%%GCU$BALANCER-S-INIT, CPU balancer initialized.\n\n");

/*** Main loop ***/
do
{

/* Calculate a running average and update it */

OpenVMS Galaxy CPU Load Balancer Program A–11

nprocs = sys$cmkrnl(cpu_q,&arglst) * 100;

/* Check out our state... */

switch (heartbeat[partition_id])
{

case HEARTBEAT_RESTART: /* Mark ourself for reinitializition. */
{

update_cpucount(0);
status = sys$acquire_galaxy_lock(gLocks[partition_id],GLOCK_TIMEOUT,0);
if (_failed(status)) exit(status);
heartbeat[partition_id] = HEARTBEAT_ALIVE;
status = sys$release_galaxy_lock(gLocks[partition_id]);
if (_failed(status)) exit(status);
break;

}
case HEARTBEAT_ALIVE: /* Update running average and continue. */
{

busy = (busycnt[partition_id]*(num_samples-1)+nprocs)/num_samples;
busycnt[partition_id] = busy;
break;
}
case HEARTBEAT_TRANSPLANT: /* Waiting for a new CPU to arrive. */
{
/*
** Someone just either reset us, or gave us a CPU and put a wait
** on further donations. Reassure the Galaxy that we’re alive,
** and calculate a new busy count.
*/
busycnt[partition_id] = nprocs;
status = sys$acquire_galaxy_lock(gLocks[partition_id],GLOCK_TIMEOUT,0);
if (_failed(status)) exit(status);
heartbeat[partition_id] = HEARTBEAT_ALIVE;
status = sys$release_galaxy_lock(gLocks[partition_id]);
if (_failed(status)) exit(status);
break;

}
default: /* This should never happen. */
{

exit(0);
break;

}
}

/* Determine the most_busy instance. */

for (most_busy_id=most_busy=i=0; i<max_instances; i++)
{

if (busycnt[i] > most_busy)
{

most_busy_id = (uint64) i;
most_busy = busycnt[i];

}
}

if (show_stats)
printf("Current Load: %3Ld, Busiest Instance: %Ld, Queue Depth: %4d\r",

busycnt[partition_id],most_busy_id,(nprocs/100));

/* If someone needs a CPU and we have an extra, donate it. */

if ((most_busy > busy + load_tolerance) &&

A–12 OpenVMS Galaxy CPU Load Balancer Program

(cpucount[partition_id] > 1) &&
(heartbeat[most_busy_id] != HEARTBEAT_TRANSPLANT) &&
(most_busy_id != partition_id))

{
reassign_a_cpu(most_busy_id);

}

/* Hibernate for a while and do it all again. */

status = sys$schdwk(0,0,δ,0);
if (_failed(status)) exit(status);
status = sys$hiber();
if (_failed(status)) exit(status);

} while (1);
return (1);

}

OpenVMS Galaxy CPU Load Balancer Program A–13

B
Common Values for Environment Variables

Table B–1 lists common values for Galaxy environment variables. All values are
expressed in hexadecimal bytes.

Table B–1: Common Values for Environment Variables
1 MB 0x 10 0000

2 MB 0x 20 0000

4 MB 0x 40 0000

8 MB 0x 80 0000

16 MB 0x 100 0000

32 MB 0x 200 0000

64 MB 0x 400 0000

128 MB 0x 800 0000

256 MB 0x 1000 0000

448 MB 0x1C00 0000

512 MB 0x 2000 0000

1 GB 0x 4000 0000

2 GB 0x 8000 0000

4 GB 0x 1 0000 0000

8 GB 0x 2 0000 0000

16 GB 0x 4 0000 0000

32 GB 0x 8 0000 0000

64 GB 0x 10 0000 0000

128 GB 0x 20 0000 0000

256 GB 0x 40 0000 0000

512 GB 0x 80 0000 0000

1 TB 0x 100 0000 0000

Common Values for Environment Variables B–1

Index

A
AlphaServer 4100 system

creating an OpenVMS Galaxy, 7–1
AlphaServer 8200 system

creating an OpenVMS Galaxy, 6–1
AlphaServer 8400 system

creating an OpenVMS Galaxy, 5–1
AlphaServer ES40 system

creating an OpenVMS Galaxy, 8–1
AlphaServer GS140 system

creating an OpenVMS Galaxy, 4–1
AlphaServer GS160 system

creating an OpenVMS Galaxy, 9–1
AlphaServer GS60 system

creating an OpenVMS Galaxy, 4–1
AlphaServer GS60E system

creating an OpenVMS Galaxy, 4–1

B
Booting the OpenVMS Galaxy

on an AlphaServer 8200, 6–6
on an AlphaServer 8400, 5–9

C
CD drive recommendation, 2–10
Cluster information, 2–10

becoming a Galaxy instance, 2–10
SCSI consideration, 2–10

Common values for environment
variables, B–1

Communicating with shared memory
LAN (local area network), 16–3
SMCI (Shared Memory Cluster

Interconnect), 16–1
Computing models

shared-everything computing model,
2–8

shared-nothing computing model, 2–7
shared-partial computing model, 2–7

Configuration requirements
for an AlphaServer 4100, 7–1
for an AlphaServer 8200, 6–1
for an AlphaServer 8400, 5–1
for an AlphaServer ES40, 8–1
for an AlphaServer GS160, 9–1

CPU load balancer program
example, A–3

CPU load balancer program overview
build and copy instructions, A–1
required privileges, A–1
shutdown warning, A–3
starting the load balancer from GCU,

A–2
startup options, A–2

CPU reassignment
DCL, 14–1
faults, 14–3
GCU drag-and-drop, 14–1
intermodal, 14–2
sofware reassignment using Galaxy

services, 14–2
Creating a system disk

on an AlphaServer 8200, 6–2
on an AlphaServer 8400, 5–5
on an AlphaServer GS160, 9–1

Creating an OpenVMS Galaxy
on an AlphaServer 4100, 7–1
on an AlphaServer 8200, 6–1
on an AlphaServer 8400, 5–1
on an AlphaServer ES40, 8–1
on an AlphaServer GS140, 4–1
on an AlphaServer GS160, 9–1
on an AlphaServer GS320, 9–1
on an AlphaServer GS60, 4–1
on an AlphaServer GS60E, 4–1
on an AlphaServer GS80, 9–1

Customizing GCU menus, 12–14

D
DCL command

CONFIGURE GALAXY, 15–3t
INITIALIZE, 15–2t
INSTALL/LIST, 15–3t
SET CPU/[NO]AUTO_START, 15–1t
SET CPU/[NO]FAILOVER, 15–1t
SET CPU/MIGRATE, 15–1t
SET CPU/OVERRIDE_CHECKS,

15–1t
SET CPU/POWER, 15–1t
SET CPU/REFRESH, 15–1t
SET CPU/START, 15–1t
SET ENTRY, 15–2t
SET PROCESS, 3–8t, 15–2t
SET QUEUE, 15–2t
SHOW CPU/ACTIVE_SET, 15–1t

Index–1

SHOW CPU/CONFIGURE_SET, 15–1t
SHOW CPU/POTENTIAL_SET, 15–2t
SHOW CPU/STANDBY_SET, 15–2t
SHOW CPU/SYSTEM, 15–2t
SHOW MEMORY, 15–3t
SHOW PROCESS, 3–8t, 15–2t
START QUEUE, 15–2t
START/CPU/POWER[=ON], 15–2t
STOP/CPU/MIGRATE, 15–2t
STOP/CPU/POWER=OFF, 15–2t
SUBMIT, 15–2t

DCL commands
CONFIGURE, 15–8
INSTALL, 15–8
INSTALL ADD, 15–8
SHOW MEMORY, 15–7

DCL commands useful for managing
OpenVMS Galaxy
CPU commands, 15–6

SET CPU, 15–7
SHOW CPU, 15–6
STOP/CPU/MIGRATE, 15–6

DCL lexical
F$GETJPI, 3–8t, 15–5t
F$GETSYI, 3–8t

Direct-mapped DMA window
changes, 18–1

E
Environment variables, B–1

G
Galaxy benefits, 2–4

adaptability, 2–5
availability, 2–4
compatibility, 2–4
cost of ownership, 2–5
performance, 2–5
scalability, 2–5

Galaxy configuration considerations,
2–9
EISA bus support, 2–9
memory granularity restrictions, 2–9
XMI bus support, 2–9

Galaxy configuration models
active model, 12–7
offline models, 12–7
online versus offline models, 12–16

Galaxy Configuration Utility, 12–1
(See also See GCU)

Galaxy features, 2–3
clustering, 2–3
CPU reassignment, 2–4

dynamic reconfiguration, 2–4
SMP, 2–4

Galaxy hardware and software
components
console, 2–1
CPUs, 2–1
I/O, 2–2
independent instances, 2–2
shared memory, 2–1

Galaxy Software Architecture, 2–1
Galaxy tips and techniques

changing console environment
variables, 11–1

console hints, 11–1
system auto-action, 11–1
turning off Galaxy mode, 11–2

Galaxy Version 7.3 features, 2–5
Galaxywide global sections, 17–3
GCU (Galaxy Configuration Utility)

definition of, 12–1
GCU charts

failover assignment chart, 12–13
logical structure chart, 12–10
memory assignment chart, 12–11
physical structure chart, 12–9
using, 12–8

GCU operations
creating galaxy configuration models,

12–2
interaction, 12–4
observation, 12–3

GCU system messages, 12–16

H
Hardware requirements

for an AlphaServer 4100, 7–1
for an AlphaServer 8200, 6–1
for an AlphaServer 8400, 5–1
for an AlphaServer ES40, 8–1
for an AlphaServer GS160, 9–1

Hardware setup
installing EISA devices on an

AlphaServer 8200, 6–1
installing EISA devices on an

AlphaServer 8400, 5–4
installing the KFE72-DA module on an

AlphaServer 8400, 5–2
overview of KFE72-DA console

subsystem on an AlphaServer 8400,
5–2

High-availability applications, 2–6
How PCI direct-mapped DMA works

as of OpenVMS Version 7.3, 18–1
prior to OpenVMS V7.3, 18–1

Index–2

I
Initializing system and starting

console devices
on an AlphaServer 4100, 7–4
on an AlphServer ES40, 8–5

Initializing the secondary consoles
on an AlphaServer GS160, 9–5

Installing OpenVMS Alpha
on an AlphaServer 4100, 7–3
on an AlphaServer 8200, 6–2
on an AlphaServer 8400, 5–5
on an AlphaServer ES40, 8–3
on an AlphaSever GS160, 9–1

IOC$NODE_DATA changes, 18–2

L
LANs (local area networks), 16–1
Local area networks, 16–1

(See also See LANs)

M
Managing CPU resources, 14–1
Managing OpenVMS Galaxy with the

GCU
independent instances, 12–5
isolated instances, 12–5
required PROXY access, 12–6

Monitoring an OpenVMS Galaxy with
DECamds, 12–15

O
OpenVMS Galaxy device drivers,

18–1

S
SDA (System Dump Analyzer)

about using, 2–13
dumping shared memory, 2–13

Security considerations, 2–11
Setting environment variables

on an AlphaServer 4100, 7–3
on an AlphaServer 8200, 6–3
on an AlphaServer 8400, 5–6
on an AlphaServer ES40, 8–4
on an AlphaServer GS160, 9–2

Shared Memory Cluster Interconnect,
16–1

(See also See SMCI)
Shared memory programming

interfaces, 17–1
SHOW RAD command, 3–8
Single-instance Galaxy

definition, 2–8
using on any Alpha system, 10–1

SMCI (Shared Memory Cluster
Interconnect), 16–1

Starting the secondary console
devices
on an AlphaServer 8200, 6–4
on an AlphaServer 8400, 5–8
on an AlphaServer GS160, 9–5

System Dump Analyzer, 2–13
(See also See SDA)

System services
$ACQUIRE_GALAXY_LOCK, 2–12t
$CLEAR_SYSTEM_EVENT, 2–13t
$CPU_TRANSITION[W], 14–3
$CREATE_GALAXY_LOCK, 2–12t
$CREATE_GALAXY_LOCK_TABLE,

2–12t
$CREATE_GDZRO, 3–7t
$CREPRC, 3–7t
$CRMPSC_GDZRO_64, 3–8t
$DELETE_GALAXY_LOCK, 2–12t
$DELETE_GALAXY_LOCK_TABLE,

2–12t
enhanced services, 17–2
$GET_GALAXY_LOCK_INFO, 2–12t
$GET_GALAXY_LOCK_SIZE, 2–13t
$GETJPI, 3–8t
$GETSYI, 3–8t
new section flag, 17–2
$RELEASE_GALAXY_LOCK, 2–13t
$SET_PROCESS_PROPERTIESW,

3–8t
$SET_SYSTEM_EVENT, 2–13t

U
Upgrading the firmware

on an AlphaServer 4100, 7–3
on an AlphaServer 8200, 6–2
on an AlphaServer 8400, 5–5
on an AlphaServer ES40, 8–4

Using shared memory, 17–1

Index–3

	OpenVMS Alpha Partitioning and Galaxy Guide
	Contents
	Preface
	Related Documents
	Reader’s Comments
	How to Order Additional Documentation
	For Additional Information
	Conventions

	1 Managing Workloads With Partitions and Resource Managemement
	1.1 Using Hard and Soft Partitions on OpenVMS Systems
	1.2 OpenVMS Partitioning Guidelines
	1.3 Hard Partition Requirements and Configuration
	1.3.1 Hard Partition Configuration Example 1
	1.3.2 Hard Partition Configuration Example 2
	1.3.3 Hard Partition Configuration Example 3
	1.3.4 Updating Console Firmware on AlphaServer GS80/160/320 Systems

	1.4 OpenVMS Galaxy Support
	1.5 OpenVMS Application Support for Resource Affinity Domains (RADs)

	2 OpenVMS Galaxy Concepts
	2.1 OpenVMS Galaxy Concepts and Components
	2.2 OpenVMS Galaxy Features
	2.3 OpenVMS Galaxy Benefits
	2.4 OpenVMS Galaxy Version 7.3 Features
	2.5 OpenVMS Galaxy Advantages
	2.6 When OpenVMS Galaxy Is Not the Best Choice
	2.7 Possible OpenVMS Galaxy Configurations
	2.7.1 Shared-Nothing Computing Model
	2.7.2 Shared-Partial Computing Model
	2.7.3 Shared-Everything Computing Model

	2.8 What Is a Single-Instance Galaxy?
	2.9 OpenVMS Galaxy Configuration Considerations
	2.9.1 XMI Bus Support
	2.9.2 Memory Granularity Restrictions
	2.9.3 EISA Bus Support

	2.10 CD Drive Recommendation
	2.11 Important Cluster Information
	2.11.1 Becoming an OpenVMS Galaxy Instance
	2.11.2 SCSI Cluster Considerations

	2.12 Security Considerations in an OpenVMS Galaxy Computing Environment
	2.13 Configuring OpenVMS Galaxy Instances in Time Zones
	2.14 Developing OpenVMS Galaxy Programs
	2.14.1 Locking Programming Interfaces
	2.14.2 System Events Programming Interfaces
	2.14.3 Using SDA in an OpenVMS Galaxy
	2.14.3.1 Dumping Shared Memory
	2.14.3.2 Summary of SDA Command Interface Changes or Additions

	3 NUMA Implications on OpenVMS Applications
	3.1 OpenVMS NUMA Awareness
	3.1.1 Home RAD
	3.1.2 System Code Replication
	3.1.3 Distributing Global Pages

	3.2 Application Resource Considerations
	3.2.1 Processes and Shared Data
	3.2.2 Memory
	3.2.3 Sharing and Synchronization
	3.2.4 Use of OpenVMS Features

	3.3 Batch Job Support for NUMA Resource Affinity Domains
	3.3.1 Batch Queue Level RAD Support
	3.3.1.1 Examples

	3.3.2 Job Level RAD Support
	3.3.2.1 Examples

	3.3.3 Run-Time Behavior
	3.3.3.1 Error Processing
	3.3.3.2 RAD Modifications On Batch Queues

	3.4 RAD Application Programming Interfaces
	3.5 RAD System Services Summary Table
	3.6 RAD DCL Command Summary Table
	3.7 System Dump Analyzer (SDA) Support for RADs
	3.7.1 SHOW RAD
	3.7.2 SHOW RMD (Reserved Memory Descriptor)
	3.7.3 SHOW PFN
	3.7.4 RAD Support for Hard Affinity

	4 Creating an OpenVMS Galaxy on AlphaServer GS140/GS60/GS60E Systems
	5 Creating an OpenVMS Galaxy on an AlphaServer 8400 System
	5.1 Step 1: Choose a Configuration and Determine Hardware Requirements
	5.2 Step 2: Set Up Hardware
	5.2.1 Overview of KFE72-DA Console Subsystem Hardware
	5.2.2 Installing the KFE72-DA Modules
	5.2.2.1 Slide the PCI Card Cage Out
	5.2.2.2 Insert Modules and Connect Ribbon Cables
	5.2.2.3 Attaching the Connectors

	5.2.3 Slide Shelf Back Into System
	5.2.4 Using a Terminal Server
	5.2.5 Installing EISA Devices

	5.3 Step 3: Create a System Disk
	5.4 Step 4: Install OpenVMS Alpha Version 7.3
	5.4.1 OpenVMS Galaxy Licensing Information

	5.5 Step 5: Upgrade the Firmware
	5.6 Step 6: Set the Environment Variables
	5.7 Step 7: Start the Secondary Console Devices
	5.8 Step 8: Boot the OpenVMS Galaxy

	6 Creating an OpenVMS Galaxy on an AlphaServer 8200 System
	6.1 Step 1: Choose a Configuration and Determine Hardware Requirements
	6.2 Step 2: Set Up Galaxy Hardware
	6.2.1 Installing EISA Devices

	6.3 Step 3: Create a System Disk
	6.4 Step 4: Install OpenVMS Alpha Version 7.3
	6.5 Step 5: Upgrade the Firmware
	6.6 Step 6: Set the Environment Variables
	6.7 Step 7: Start the Secondary Console Device
	6.8 Step 8: Boot the OpenVMS Galaxy

	7 Creating an OpenVMS Galaxy on an AlphaServer 4100 System
	7.1 Before You Start
	7.2 Step 1: Confirm the AlphaServer 4100 Configuration
	7.3 Step 2: Install OpenVMS Alpha Version 7.3
	7.4 Step 3: Upgrade the Firmware
	7.5 Step 4: Set the Environment Variables
	7.6 Step 5: Initialize the System and Start the Console Devices

	8 Creating an OpenVMS Galaxy on an AlphaServer ES40 System
	8.1 Before You Start
	8.2 Step 1: Confirm the AlphaServer ES40 Configuration
	8.3 Step 2: Install OpenVMS Alpha Version 7.3–1
	8.4 Step 3: Upgrade the Firmware
	8.5 Step 4: Set the Environment Variables
	8.6 Step 5: Initialize the System and Start the Console Devices

	9 Creating an OpenVMS Galaxy on AlphaServer GS80/160/320 Systems
	9.1 Step 1: Choose a Configuration and Determine Hardware Requirements
	9.2 Step 2: Set Up the Hardware
	9.3 Step 3: Create a System Disk
	9.4 Step 4: Install OpenVMS Alpha Version 7.3
	9.4.1 OpenVMS Galaxy Licensing Information

	9.5 Step 5: Set the Environment Variables
	9.5.1 AlphaServer GS160 Example
	9.5.2 AlphaServer GS320 Example
	9.5.3 Environment Variable Descriptions

	9.6 Step 6: Start the Secondary Console Devices
	9.7 Step 7: Initialize the Secondary Consoles
	9.8 Step 8: Boot the OpenVMS Galaxy

	10 Using a Single-Instance Galaxy on Any Alpha System
	11 OpenVMS Galaxy Tips and Techniques
	11.1 System Auto-Action
	11.2 Changing Console Environment variables
	11.3 Console Hints
	11.4 Turning Off Galaxy Mode

	12 OpenVMS Galaxy Configuration Utility
	12.1 GCU Tour
	12.1.1 Creating Galaxy Configuration Models
	12.1.2 Observation
	12.1.2.1 Layout Management
	12.1.2.2 OpenVMS Galaxy Charts

	12.1.3 Interaction

	12.2 Managing an OpenVMS Galaxy with the GCU
	12.2.1 Independent Instances
	12.2.2 Isolated Instances
	12.2.3 Required PROXY Access

	12.3 Galaxy Configuration Models
	12.3.1 Active Model
	12.3.2 Offline Models
	12.3.2.1 Example: Creating an Offline Model

	12.4 Using the GCU Charts
	12.4.1 Component Identification and Display Properties
	12.4.2 Physical Structure Chart
	12.4.2.1 Hardware Root
	12.4.2.2 Ownership Overlay

	12.4.3 Logical Structure Chart
	12.4.3.1 Software Root
	12.4.3.2 Unassigned Resources
	12.4.3.3 Community Resources
	12.4.3.4 Instance Resources
	12.4.4 Memory Assignment Chart
	12.4.4.1 Console Fragments
	12.4.4.2 Private Fragments
	12.4.4.3 Shared Memory Fragments

	12.4.5 CPU Assignment Chart
	12.4.5.1 Primary CPU
	12.4.5.2 Secondary CPUs
	12.4.5.3 Fast Path and Affinitized CPUs
	12.4.5.4 Lost CPUs

	12.4.6 IOP Assignment Chart
	12.4.7 Failover Target Chart

	12.5 Viewing Component Parameters
	12.6 Executing Component Commands
	12.7 Customizing GCU Menus
	12.8 Monitoring an OpenVMS Galaxy with DECamds
	12.9 Running the CPU Load Balancer Program
	12.10 Creating an Instance
	12.11 Dissolving an Instance
	12.12 Shutdown and Reboot Cycles
	12.13 Online Versus Offline Models
	12.14 GCU System Messages

	13 Installing the Graphical Configuration Manager (GCM)
	13.1 Overview
	13.2 Installation Prerequisites
	13.2.1 Software Requirements
	13.2.2 Hardware Requirements

	13.3 Installation Procedure
	13.3.1 Kits
	13.3.2 Installing the GCM Server
	13.3.3 Installing the GCM Client
	13.3.3.1 OpenVMS GCM Client
	13.3.3.2 PC GCM Client
	13.3.4 Setting Up the GCM Server

	13.4 Starting the GCM Server
	13.4.1 Automatic GCM Server Startup
	13.4.2 Manual GCM Server Startup

	13.5 Postinstallation Administrative Tasks
	13.5.1 Authorizing GCM Users and Defining the Subscription Template
	13.5.2 Managing the Library
	13.5.3 Custom Banners
	13.5.4 System Notices
	13.5.5 Customizing Commands

	13.6 Configuring the Association
	13.6.1 Consideration
	13.6.2 Adding Systems to An Association

	13.7 Customizing GCM
	13.7.1 Defining and Using Commands

	13.8 GCM Server Log Files
	13.9 Troubleshooting the GCM Server
	13.9.1 Obtaining Diagnostic Information
	13.9.2 Potential Problem Areas
	13.9.3 Timeout Detection

	13.10 Performance
	13.11 Maintaining the GCM Server
	13.12 Sample Verbose GCM Server Setup

	14 CPU Reassignment
	14.1 DCL Reassignment
	14.2 GCU Drag-and-Drop Reassignment
	14.3 Intermodal Reassignment
	14.4 Software Reassignment Using Galaxy Services
	14.5 Reassignment Faults

	15 DCL Commands and Lexical Functions
	15.1 DCL Commands
	15.2 DCL Lexical Functions
	15.3 DCL Command Examples
	15.3.1 CPU Commands
	15.3.1.1 STOP/CPU/MIGRATE
	15.3.1.2 SHOW CPU
	15.3.1.3 SET CPU

	15.3.2 SHOW MEMORY
	15.3.3 Lexical Function Example
	15.3.4 INSTALL LIST
	15.3.5 INSTALL ADD/WRITABLE
	15.3.6 CONFIGURE GALAXY

	16 Communicating With Shared Memory
	16.1 Shared Memory Cluster Interconnect (SMCI)
	16.1.1 SYS$PBDRIVER Port Devices
	16.1.2 Multiple Clusters in a Single Galaxy
	16.1.3 SYSGEN Parameters for SYS$PBDRIVER
	16.1.3.1 SMCI_PORTS

	16.1.4 SMCI_FLAGS

	16.2 LAN Shared Memory Device Driver

	17 Shared Memory Programming Interfaces
	17.1 Using Shared Memory
	17.2 System Services
	17.2.1 Enhanced Services
	17.2.2 New Section Flag SEC$M_READ_ONLY_SHPT

	17.3 Galaxywide Global Sections

	18 OpenVMS Galaxy Device Drivers
	18.1 Direct-Mapped DMA Window Changes
	18.2 How PCI Direct-Mapped DMA Works Prior to OpenVMS Version 7.2
	18.3 How PCI Direct-Mapped DMA Works in Current Versions of OpenVMS
	18.4 IOC$NODE_DATA Changes to Support Nonzero Direct-Mapped DMA Windows

	A OpenVMS Galaxy CPU Load Balancer Program
	A.1 CPU Load Balancer Overview
	A.1.1 Required Privileges
	A.1.2 Build and Copy Instructions
	A.1.3 Startup Options
	A.1.4 Starting the Load Balancer from the GCU
	A.1.5 Shutdown Warning

	A.2 Example Program

	B Common Values for Environment Variables
	Index
	Examples
	Example 13–1: Sample GCM Server Installation
	Example 13–2: Directory of GCM Server Files
	Example 13–3: OpenVMS GCM Client Installation
	Example 13–4: Directory of GCM Client Files
	Example 13–5: Sample GCM Server Setup

	Figures
	Figure 1–1: Configuration Example 1
	Figure 1–2: Configuration Example 2
	Figure 1–3: Configuration Example 3
	Figure 2–1: OpenVMS Galaxy Architecture Diagram
	Figure 2–2: Another Galaxy Architecture Diagram
	Figure 2–3: Shared-Nothing Computing Model
	Figure 2–4: Shared-Partial Computing Model
	Figure 2–5: Shared-Everything Computing Model
	Figure 5–1: Attaching Ribbon Cables
	Figure 5–2: Connectors
	Figure 18–1: PCI-Based DMA
	Figure 18–2: OpenVMS DMA

	Tables
	Table 2–1: Galaxy System Services for Lock Programming
	Table 2–2: Galaxy System Services for Events Programming
	Table 2–3: Definitions of Bits in DUMPSTYLE
	Table 13–1: Sample Worksheet for A Simple Association
	Table 15–1: CPU-Related DCL Commands
	Table 15–2: RAD-Related DCL Commands
	Table 15–3: Other DCL Commands
	Table 15–4: Galaxy F$GETSYI Item Codes
	Table 15–5: Partitioning F$GETSYI Item Codes
	Table 15–6: SMP F$GETSYI Item Codes
	Table 15–7: RAD F$GETJPI Item Code
	Table 15–8: RAD F$GETSYI Item Codes
	Table B–1: Common Values for Environment Variables

