
HP OpenVMS Migration
Software for Alpha to Integrity
Servers
Guide toTranslating Images

February 2005

This manual describes how to use the Alpha Environment Software
Translator (AEST) and other OpenVMS Migration Software for Alpha
to Integrity Servers tools for translating and porting OpenVMS Alpha
applications to OpenVMS Industry Standard 64 systems.

Revision/Update Information: This is a new manual

Software Version: OpenVMS Migration Software for
Alpha to Integrity Servers Version 1.0

Operating System and Version: OpenVMS I64 Version 8.2

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

PostScript is s registered trademark of Adobe Systems Incorporated.

UNIX is a registered trademark of The Open Group.

Microsoft is a registered trademark of the Microsoft Corporation.

Printed in the US

Contents

Preface . vii

Part I User’s Guide to Translating Images

1 Introduction to Image Translation

1.1 Overview of OMSAI . 1–1
1.1.1 OMSAI Features . 1–2
1.1.2 OMSAI Roles within a Migration Strategy . 1–2
1.2 Image Translation Tools and Support . 1–3
1.2.1 Alpha Environment Software Translator Utility 1–3
1.2.1.1 Alpha Image Information Files . 1–3
1.2.1.2 How AEST Works . 1–3
1.2.1.3 Code Analysis . 1–3
1.2.1.4 Code Generation . 1–3
1.2.2 Translated Image Environment . 1–4

2 Translating Images

2.1 Before Translating an Image . 2–1
2.2 Running AEST to Translate an Image . 2–1
2.2.1 AEST Return Status . 2–2
2.2.2 AEST Qualifiers . 2–3
2.2.3 AEST Output Files . 2–3
2.3 Translation of VESTed images . 2–3

3 Running Translated Images

3.1 Running the Translated Image . 3–1
3.2 Handling References to a Translated Image . 3–1

Part II Developer’s Guide to Translating Images

4 Analyzing Images

4.1 Using the /AUDIT Qualifier . 4–1

iii

5 Using Information Files

5.1 Alpha Image Information Files . 5–1
5.2 AIIF File Syntax . 5–1

6 Translating and Replacing OpenVMS Alpha Shareable Images

6.1 Interoperability Requirements . 6–1
6.1.1 /TIE and /NONATIVE_ONLY Qualifiers . 6–1
6.1.2 Preserving Upward Compatibility . 6–2
6.2 Procedures for Building Shareable-Image Variants 6–2
6.2.1 Building the Original OpenVMS Alpha Shareable Image 6–3
6.2.2 Creating the Translated Shareable Image . 6–3
6.2.2.1 Translated Main Image Calls Translated Shareable Image 6–4
6.2.2.2 Native Main Image Calls Translated Shareable Image 6–4
6.2.3 Building a Replacement Native Shareable Image 6–4

Part III Reference Information

A Command Summaries

B Error and Status Messages

B.1 Interpreting AEST Messages . B–1
B.2 AEST Messages Descriptions . B–1

C Translation and Performance Restrictions

C.1 Identifying Restrictions and Performance Issues C–1
C.2 Untranslatable Images . C–1
C.3 Images Translatable with Warnings . C–2
C.4 Images with Undetectable Translation Problems . C–2

Examples

2–1 Translating an Image . 2–2
4–1 Audit Information for SIEVE.EXE . 4–1
A–1 Summary Format . A–2

Figures

1–1 AEST Input, Processing, and Output . 1–4
1–2 Run-Time Components . 1–5

iv

Tables

2–1 AEST Output Files . 2–3
C–1 Untranslatable Images . C–1
C–2 Images Translatable with Warnings . C–2

v

Preface

Intended Audience
HP OpenVMS Migration Software for Alpha to Integrity Servers (OMSAI)
facilitates migrating OpenVMS Alpha applications and OpenVMS VAX images
translated to Alpha by OMSVA (further referred as VESTed images) to OpenVMS
Industry Standard 64 (I64) systems by allowing you to translate OpenVMS
Alpha images and VESTed images into equivalent I64 images. OMSAI consists
of the Alpha Environment Software Translator (AEST) utility and a collection of
programs and command files designed to ease the translation process. OpenVMS
Migration Software for Alpha to Integrity Servers Translating Images documents
the AEST utility and explains its use as part of a strategy for migrating
OpenVMS Alpha applications to OpenVMS Industry Standard 64 systems.

This manual is for:

• Users who are translating all or part of an OpenVMS Alpha application as
part of a strategy for migrating to an OpenVMS Industry Standard 64 system

• Users who are developing translated shareable images for OpenVMS Industry
Standard 64 systems

Document Structure
This manual consists of three parts:

• Part I: User’s Guide to Translating Images

Information in Part I is applicable to all users:

Chapter 1 describes the image translation process and the supporting
software components.

Chapter 2 describes how to use the utilities provided to translate
OpenVMS Alpha images.

Chapter 3 describes how to run translated images on OpenVMS Industry
Standard 64 systems.

• Part II: Developer’s Guide to Translating Images

Information in Part II is applicable to users who need to maximize translated
image performance; users with access to source code that can be edited either
to improve translation or to prepare source files for rebuilding on OpenVMS
Alpha systems; and users preparing translated shareable images:

Chapter 4 describes how to use the analytical capabilities of AEST to
enhance translation and to identify source problems that affect migration.

Chapter 5 describes image information files, which AEST creates and
uses in the process of image translation.

vii

Chapter 6 describes how to develop translated shareable images that
interoperate with native shareable images on an OpenVMS I64 system.

• Part III: Reference Information

Information in Part III is applicable to all users.

Appendix A provides a detailed description of the AEST command lines
and qualifiers.

Appendix B provides an alphabetical listing of all AEST error messages
with explanations and recommended user actions, if applicable.

Appendix C describes translation problems and suggests ways to debug
them.

Conventions
The following conventions may be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

viii

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It also
represents the name of an argument, an attribute, or a reason.

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

ix

Part I
User’s Guide to Translating Images

Part I contains the following information:

The image translation process and supporting software
components

Chapter 1

Using the Alpha Environment Software Translator
(AEST) utility to translate OpenVMS Alpha images

Chapter 2

Running translated images on an OpenVMS I64 system Chapter 3

1
Introduction to Image Translation

This chapter discusses the following topics:

An overview of OMSAI Section 1.1

A description of OMSAI tools and support Section 1.2

1.1 Overview of OMSAI
HP OpenVMS Migration Software for Alpha to Integrity Servers (OMSAI)
facilitates the migration of OpenVMS Alpha applications to OpenVMS Industry
Standard 64 (I64) systems. An OMSAI utility, the Alpha Environment Software
Translator (AEST), converts an OpenVMS Alpha executable or shareable image
into a translated image that runs on an OpenVMS I64 system. When the
translated image runs, the OpenVMS I64 system transparently supports the
image with an environment that allows it to run as if it were on an OpenVMS
Alpha system.

Translating and running an image can be as simple as the following example:

OpenVMS Alpha system
$ aest sieve !

OpenVMS I64 system
$ run sieve_av "

Sieve of Eratosthenes #
500 iterations
1899 primes found
time taken : 2 seconds

The OMSAI kit includes the image SIEVE.EXE, which you can find in the
directory SYS$SYSROOT:[SYSHLP.EXAMPLES.AEST] after the product has
been installed. Try the commands shown on your own system. AEST creates
the translated image in the current directory and names it by appending _AV
to the input image file name. The translated version of SIEVE.EXE is named
SIEVE_AV.EXE. In the previous example, the callouts highlight:

! The AEST command used to translate an image. The command assumes
the file extension to be .EXE.
" The DCL command used to run the translated image. The same command
is used to run SIEVE.EXE on an OpenVMS Alpha system.
The output displayed by the translated image.

AEST can translate many images easily. However, when you are translating
shareable images or images that are linked against user-written or third-party
shareable images, you might need to take some additional steps. For example,
an image might contain dependencies on the Alpha architecture or OpenVMS
Alpha operating system that can affect translation. In some cases, you can use
AEST qualifiers to accommodate such dependencies. In other cases, you may

Introduction to Image Translation 1–1

Introduction to Image Translation
1.1 Overview of OMSAI

need to modify and rebuild source files, if they’re available, to avoid the Alpha
dependencies.

The remainder of this overview discusses OMSAI features (Section 1.1.1) and
OMSAI’s role within a migration strategy (Section 1.1.2).

1.1.1 OMSAI Features
OMSAI features include:

• Automated translation

OMSAI translates images automatically; it requires no human intervention to
analyze and translate code.

• Image analysis

OMSAI analyzes images and reports its findings in various forms (messages
and listings); these findings are useful not only for translation, but also for
preparing original sources for recompiling and relinking on OpenVMS I64
systems.

AEST cannot translate all OpenVMS Alpha images; some restrictions apply.
For example, AEST cannot translate images linked on versions prior to
Version 6.1. Also, AEST does not support certain coding practices because
OpenVMS I64 systems cannot reproduce the corresponding Alpha code
correctly. AEST issues an error message when it encounters unsupported
code, and may or may not create a translated image, depending on the
specific problem reported.

1.1.2 OMSAI Roles within a Migration Strategy
To migrate an OpenVMS Alpha application to an OpenVMS I64 system, the
following options are available:

• Rebuild application source files (preferred)

Rebuilding source files by recompiling and relinking them is the preferred
option because it achieves better I64 system performance than image
translation and results in smaller images. If the source files and an
appropriate compiler are available, you can recompile and relink an
application.

• Translate the application’s OpenVMS Alpha images

If either the application sources or the appropriate compiler is not available,
then translating images is the only alternative.

• Combine source rebuilding with image translation

Recompiling and relinking source files for some of the application and then
translating images for the remainder of the application is a third migration
option. This option is possible because the OpenVMS I64 system supports
interoperability; that is, it allows native and translated images to issue calls
to and receive calls from one another.

The combination of application rebuilding and image translation provides a
great deal of flexibility in your migration strategy.

1–2 Introduction to Image Translation

Introduction to Image Translation
1.2 Image Translation Tools and Support

1.2 Image Translation Tools and Support
The image translation tools and support include:

• The AEST utility, the primary translation tool (Section 1.2.1).

• The Translated Image Environment (TIE), a native shareable image and
other components within the OpenVMS I64 system that supports translated
images at run time (Section 1.2.2).

1.2.1 Alpha Environment Software Translator Utility
The AEST utility translates executable and shareable images; it accepts an
OpenVMS Alpha image file (IMAGE.EXE) as input, analyzes the image file to
locate Alpha code, and then creates a translated image file (IMAGE_AV.EXE).
The translated image, which performs the identical functions as the original, is
an OpenVMS I64 image that consists of both I64 code and the original OpenVMS
Alpha image. This section first describes text files AEST uses for finding and
analyzing code, and then briefly explains how AEST works.

1.2.1.1 Alpha Image Information Files
Alpha Image Information files (also called .AIIF files) are text files that provide
AEST with additional information to be used during image translation. An
Alpha Image Information file contains the information used by AEST utility to
redirect external references (such as procedure calls) to replacements in (probably
different) shared images. The .AIIF file describes the properties of a shareable
image’s exported interface, that is, the precise locations that are described in the
image’s symbol vector. These files contain mapping between Alpha and I64 entry
points. Chapter 5 explains how AEST accesses the information files.

1.2.1.2 How AEST Works
AEST processes an OpenVMS Alpha image in two major phases to generate an
equivalent OpenVMS I64 image: an analysis phase and a code generation phase.
Figure 1–1 illustrates AEST input, processing, and output.

1.2.1.3 Code Analysis
During the analysis phase, AEST extensively analyzes the input image file to
find the entry points, to separate the code and data, and to detect anomalies that
cannot be correctly reproduced in the OpenVMS I64 environment. AEST tries to
find as much code as possible since the TIE must interpret any unfound code at
run time.

1.2.1.4 Code Generation
The second phase of translation generates the translated image, an I64 image
that includes translated code as well as the complete original OpenVMS Alpha
image. Translated code is native I64 code that performs the same function as the
corresponding Alpha code in the original image. When the translated image runs
on an OpenVMS I64 system, it reproduces the behavior of the original image.

Introduction to Image Translation 1–3

Introduction to Image Translation
1.2 Image Translation Tools and Support

Figure 1–1 AEST Input, Processing, and Output

VM-1184A-AI

Image.EXE

$AEST[qualifiers...] image.EXE

image_AV.EXE

image_AV.LIS

OpenVMS image

AEST Command Line

AEST Processing

Translated Image

List File

AEST creates a
translated image
in two phases:

1. Find and
analyze code;
read related
.AIIF files.

2. Create
translated image
that includes
IA64 code and
original image.

1.2.2 Translated Image Environment
The Translated Image Environment (TIE) provides the OpenVMS I64 system
with the resources that a translated image needs in order to run. A variety of
components work together to support execution of translated images:

• The translated image itself, which includes both the original OpenVMS Alpha
image and translated code. The translated code includes calls, inserted by
AEST, to TIE$SHARE. These calls initiate processing that is not native to
OpenVMS I64 systems.

• TIE$SHARE, which is an OpenVMS I64 shareable image. TIE$SHARE
provides functions that enable the translated image to execute as if it were on
an OpenVMS Alpha system. TIE$SHARE functions include:

Managing Alpha state information and other information that defines the
relationship between the original Alpha code and the translated code.

Implementing OpenVMS Alpha features that the translated image
requires, such as exception processing.

Interpreting Alpha code that AEST did not translate.

• Translated versions of some OpenVMS Alpha run-time libraries to be used by
translated images.

• Native I64 and translated Alpha jacketing libraries, which mediate
nonstandard calls from translated images to native I64 run-time libraries.

1–4 Introduction to Image Translation

Introduction to Image Translation
1.2 Image Translation Tools and Support

• Other features of the OpenVMS I64 operating system working cooperatively
with TIE$SHARE to perform exception processing, to deliver ASTs and to
enable communication between translated and native images.

Automatic jacketing, described in Chapter 6, provides the interoperability
mechanism for most communication between translated and native images; it
provides the bridge between the Alpha and I64 calling standards.

Figure 1–2 shows the interrelationship of the run-time components.

Figure 1–2 Run-Time Components

Translated Image Environment

VM-1183A-AI

Native
Images

Translated
Main and Sharable

Images

OpenVMS I64

TIE$SHARE

Jacketing
Interface

Jacketing
Interface

Reception
Handling

Exception
Handling

Alpha State
Manager

Alpha
Interpreter

System Service
Callback

System Service
Emulation

Introduction to Image Translation 1–5

2
Translating Images

This chapter discusses the following:

What to consider before translating an image Section 2.1

Running AEST to translate an image Section 2.2

Related topics in other chapters include:

Special considerations when translating shareable images Chapter 6

Running translated images Chapter 3

2.1 Before Translating an Image
Not all images can be translated. Examples of such images are those that contain
privileged code or images that must be run in privileged mode, or those that
contain code written in a language that is not supported by AEST. To verify
that your image can be translated, try running AEST with the /AUDIT qualifier,
before you perform the actual translation of the image. Adding the /DUMP
qualifier will produce a listing file containing some additional information on your
image internal structure.

For further details about the /AUDIT qualifier, see the description of AEST in
Appendix A.

2.2 Running AEST to Translate an Image
The following command translates an OpenVMS Alpha executable or shareable
image:

AEST[/ qualifier,...] image [.EXE]

where image is the file name of the OpenVMS Alpha image to be translated. The
default extension is .EXE.

Section 2.2.2 describes the AEST qualifiers. If the translation is successful, AEST
creates the translated image in your current directory and names it by appending
_AV to the input image file name, as follows:

image_AV.EXE

Note

A file name cannot exceed 39 characters in length. Because of this
limitation, AEST truncates any input image file name that exceeds 36
characters in order to append the characters _AV.

Translating Images 2–1

Translating Images
2.2 Running AEST to Translate an Image

If AEST encounters errors that prompt ERROR or FATAL level messages, it
does not create a translated image. In this event, the messages explain why the
translation was unsuccessful.

Example 2–1 shows the successful translation of an image called
DHRYSTONE.EXE. In Example 2–1, the callouts note the following:

! A brief directory listing for an OpenVMS Alpha image called
DHRYSTONE.EXE.
" The AEST command line to translate DHRYSTONE.EXE.
A brief directory listing showing the original image and two new files
created by AEST:

DHRYSTONE_AV.EXE—the translated image

DHRYSTONE_AV.LIS—the listing file
$ A command to display the DHRYSTONE_AV.LIS file. This listing file
first describes the version of AEST, the date and time of the translation, the
command line issued, and header information for the image being translated.
% A summary of the AEST messages incurred during the translation. The
summary categorizes the messages as follows:

Standard messages AEST displays by default

Verbose messages that report on AEST progress during translation

Example 2–1 Translating an Image

$ directory/brief !
Directory AST_00:[AEST.TEST]
DHRYSTONE.EXE;1
Total of 1 file.
$ aest dhrystone "
$ directory/brief #
Directory AST_00:[AEST.TEST]
DHRYSTONE.EXE;1 DHRYSTONE_AV.EXE;1
DHRYSTONE_AV.LIS;1
Total of 3 files.
$ type dhrystone_av.lis $

AEST XA29 DEV_0.05A (May 7 2004) starting at May 14 42004 18:28:06 with command line: %
AEST DHRYSTONE.EXE
%AEST-I-TRANSOK, Translation completed successfully

AEST qualifiers, introduced in Section 2.2.2, allow you to tailor how AEST
translates or analyzes an image.

2.2.1 AEST Return Status
When AEST completes its run, it returns one of the following messages as exit
status to DCL:

• TRANSOK, Translation completed successfully

• TRANSWARN, Translation completed with warnings-review them before
using the output image

• TRANSERROR, Translation unsuccessful-no output image created

• TRANSFATAL, Translation was impossible

2–2 Translating Images

Translating Images
2.2 Running AEST to Translate an Image

The return status indicates the highest level of severity (INFO, WARNING,
ERROR, or FATAL) of all the messages that AEST issued during its run.

2.2.2 AEST Qualifiers
The AEST command accepts qualifiers that control processing in various ways.
For a complete description of the AEST command line and each of the qualifiers
listed, see Appendix A.

2.2.3 AEST Output Files
AEST can generate several types of output files, depending on the type of image
you are translating and the qualifiers you specify on the command line. Table 2–1
describes each type of output file, including its default name and the AEST
qualifier that controls it.

Table 2–1 AEST Output Files

Default File Name Qualifiers Description

image_AV.EXE /EXECUTABLE[=filespec]

Default: /EXECUTABLE

The translated image. AEST truncates
any input image file name that exceeds
36 characters in order to append _TV.

image_AV.LIS /LIST[= filespec]
Default: /LIST

The listing file.

2.3 Translation of VESTed images
The translation of VESTed images (original OpenVMS VAX images previously
translated to OpenVMS Alpha images by the VEST utility from OMSVA
Migration Software package) is similar to native OpenVMS Alpha images. No
additional information files or AEST utility switches are required to translate
VESTed applications.

Translating Images 2–3

3
Running Translated Images

This chapter discusses the following topics:

Running a translated image Section 3.1

Handling references to a translated image Section 3.2

3.1 Running the Translated Image
Normally, translated images can be run on OpenVMS I64 operating system
in the same way as any other OpenVMS image. The OpenVMS operating
system contains all components required. To run a translated image, use the
DCL command RUN. For example, to run the sample program SIEVE_AV.EXE
(translated in Chapter 1), enter the following command:

$ run sieve_av
Sieve of Eratosthenes
500 iterations
1899 primes found
time taken : 2 seconds

The Translated Image Environment (TIE) (see Section 1.2.2) issues error
messages whenever it encounters errors while the translated image is running.

3.2 Handling References to a Translated Image
Depending on how a translated image is activated, you might need to change the
name from image.EXE to image_AV.EXE:

If you are using the RUN command, just specify the translated image name as
shown in Section 2.2. If the image name is specified in a command language
definition (CLD) file, either modify the image name within the CLD file or define
a logical name pointing the old name to the new name, as in following example:

$ DEFINE MYMAIN YOUR$DISK:[YOUR_DIR]MYMAIN_AV.EXE;

If a foreign command symbol is used to activate the image, change the symbol
definition to specify the translated image name.

If your translated application includes shareable images that are not located in
SYS$SHARE, you must define logical names that correctly point to them, that is,
that reflect the correct location and translated image names. For example:

$ DEFINE MYMATH_AV YOUR$DISK:[YOUR_DIR]MYMATH_AV.EXE;

Note

When you run a translated image linked against an HP supplied
shareable image in SYS$SHARE, the OpenVMS I64 system automatically
activates the correct image; you do not need to redefine the shareable
image’s logical name. For translated shareable images in SYS$SHARE

Running Translated Images 3–1

Running Translated Images
3.2 Handling References to a Translated Image

not supplied by HP, you must explicitly define the appropriate logical
name.

In some cases, you might want to redirect some external references to
different shared images. You must write your own .AIIF file. For a
description of .AIIF file format, see Chapter 5.

3–2 Running Translated Images

Part II
Developer’s Guide to Translating Images

Part II contains the following information:

Improving the performance of translated images;
identifying problems in source code that can affect how
you rebuild an application for the OpenVMS Alpha
operating system

Chapter 4

Using image information files Chapter 5

Creating translated and native shareable images Chapter 6

4
Analyzing Images

This chapter describes how to use the /AUDIT qualifier to learn about image
characteristics that affect translating and rebuilding an application.

4.1 Using the /AUDIT Qualifier
The /AUDIT qualifier instructs AEST to analyze an image and to provide a brief
summary assessment that can help you decide on a migration strategy for your
application. The summary, which is based on error messages issued during the
AEST analysis, answers the following questions:

• Can the image be recompiled and rebuilt on an OpenVMS Industry Standard
64 system if the sources are available? Yes or No.

• Can the image be translated?

• What source languages were used?

For a detailed description of the /AUDIT qualifier, see Appendix A. The
description includes a suggestion for building a file of summary descriptions
by issuing a series of AEST/AUDIT commands and then using DCL commands to
extract and compile the summary descriptions.

Example 4–1 shows the listing file for an audit of the SIEVE.EXE program.

Example 4–1 Audit Information for SIEVE.EXE

$ AEST/AUDIT SIEVE.EXE
AEST (V1.0, Bld DEV_0.8/Feb 21 2005)

$ TYPE SIEVE_AV.LIS
AEST (V1.0, Bld DEV_0.8/Feb 21 2005)
Image "SIEVE", "V1.0", 24-FEB-2005 15:29:40.96
<SUM> Image name Tran Languages
<SUM> -- ---- ----------------
<SUM> 1DGA120:[VERIFICATION.BINTRAN.EXAMPLES]SIEVE.EXE YES C
$

Analyzing Images 4–1

5
Using Information Files

This chapter discusses the Alpha Image Information files (.AIIF).

5.1 Alpha Image Information Files
Alpha Image Information files are text files that provide AEST with additional
information to be used during image translation. AEST uses the information in
the AIFF file to rename the image references in the Alpha file being currently
translated. Such files are used to relink the translated image against the
different shareable images and to modify fixup information.

The .AIIF file describes the properties of a shareable image’s exported interface,
that is, the precise locations that are described in the image’s symbol vector.
These files contain mapping between Alpha and Itanium entry points.

5.2 AIIF File Syntax
C-style multiline comments are allowed in any place in the file.

The following delimiters are allowed between fields of file line:

• ’ ’

• ’\t’

• ’,’

Two type of lines are allowed for .AIIF files:

1. The first type of line is needed for reassigning the old symbol vector index of
a linked library to a new symbol vector index and probably in another library.
Use the following format for this purpose:

old_symv_idx new_symv_idx [, "new_name"]

where:

Argument Description Usage

old_symv_idx old symbol vector
index

(as decimal)

new_symv_idx new symbol vector
index

(as decimal)

new_name optional, newly
linked library

(as ASCII, must be enclosed in double
quotation marks (" "))

2. The second type of line is needed for assigning new GSMATCH fields for
newly linked libraries. Use the following format for this purpose:

"name" match_ctl minor_id major_id

Using Information Files 5–1

Using Information Files
5.2 AIIF File Syntax

Where:

Argument Description Usage

name Name of newly
linked library

(as ASCII, must be enclosed in double
quotation marks (" "))

match_ctl matching (as decimal). Identifies the match algorithm
used by the image activator. Specify one of
the following values:
0 - ALWAYS
1 - EQUAL
2 - LEQUAL

minor_id minor id (as decimal)

major_id major id (as decimal)

5–2 Using Information Files

6
Translating and Replacing OpenVMS Alpha

Shareable Images

This chapter discusses the following topics:

Interoperability requirements Section 6.1

Procedures for translating and replacing OpenVMS Alpha
shareable images

Section 6.2

6.1 Interoperability Requirements
The OpenVMS Industry Standard 64 system allows translated and native images
to interoperate by sending and receiving calls to and from one another. The
calls are routed through system jacketing routines, which perform necessary
conversions between the Alpha (or VAX) and the I64 calling standards. When
you create native images that call or communicate with translated images, you
need to use specific linking and compiling qualifiers. Furthermore, if you create
a native shareable image that replaces an OpenVMS Alpha image, you need to
maintain compatibility with that image.

The information in this chapter refers to the test C program called MYMATH
to illustrate an Alpha shareable image, and a C program called MYMAIN to
illustrate a main image that calls MYMATH. These example programs help to
describe how to create native images that make calls to and receive calls from
translated images, and highlight the following requirements for interoperability:

• Use the compiler qualifier /TIE and linker qualifier /NONATIVE_ONLY to
create a native image that can interoperate with a translated image.

• Ensure upward compatibility between the symbol vectors in a native
shareable image that supersedes an Alpha shareable image.

6.1.1 /TIE and /NONATIVE_ONLY Qualifiers
The /TIE and /NONATIVE_ONLY qualifiers instruct the compiler and linker,
respectively, to include code that enables OpenVMS I64 systems to jacket
calls to and from a translated image. When you specify the /TIE qualifier, the
compiler creates procedure signature blocks (PSBs) that the Translated Image
Environment (TIE) needs to jacket calls properly between translated and native
images. When you specify the /NONATIVE_ONLY qualifier with the LINK
command, the linker includes PSB information created by the compilers in the
image. Note that the interoperability settings for these qualifiers are not the
defaults. You must set the /TIE and /NONATIVE_ONLY settings explicitly. A
native image does not interoperate with translated images unless you use these
settings.

For further information about these qualifiers, see appropriate compiler
documentation and the HP OpenVMS Linker Utility Manual.

Translating and Replacing OpenVMS Alpha Shareable Images 6–1

Translating and Replacing OpenVMS Alpha Shareable Images
6.1 Interoperability Requirements

6.1.2 Preserving Upward Compatibility
Successive versions of the same shareable image need to be upward compatible
by maintaining the same calling interface so that calling images do not need to
be relinked. The HP OpenVMS Linker Utility Manual describes how to maintain
upward compatibility by using symbol vectors for OpenVMS Alpha and OpenVMS
I64 system images. Maintaining upward compatibility is also advisable when
creating any of the following:

• a translated shareable image

• a native image that replaces an OpenVMS Alpha shareable image

• a native image that replaces a translated shareable image

Just as you create consistent symbol vectors when building successive versions
of the same image, you create consistent symbol vectors for translated images
and native replacement images to achieve the same goal. This ensures upward
compatibility as you migrate to OpenVMS I64 systems. When you link a native
replacement image, construct the symbol vector so that it matches the transfer
vector of the original image. If the native image includes new routines, place
symbol vector entries for them after the older routine entries rather than disrupt
the original order. You can use whatever mechanism is convenient to create a
symbol vector that keeps the original order.

If you do not ensure that the symbol vectors maintain the same entry order, you
run the risk of breaking calling images. AEST may create the correct symbol
vector order when translating one version of the image, but not when translating
a subsequent version of the image. From a different perspective, if you create a
native replacement image without regard to the original order, translated images
may not be able to call it because routines are not located at the expected address.
If you have to create a jacket image because not all routines can be reproduced
in native mode, you might have to rebuild the jacket image to accommodate the
new entry order. This process is complicated and is not recommended. Use the
procedures shown in this chapter instead.

For further information about transfer vectors, symbol vectors, and compatibility,
refer to the HP OpenVMS Linker Utility Manual and VAX MACRO and
Instruction Set Reference Manual.

6.2 Procedures for Building Shareable-Image Variants
This section describes procedures for the following tasks:

• Building the original OpenVMS Alpha shareable image (Section 6.2.1)

• Creating a translated shareable image (Section 6.2.2)

• Building a native replacement image (Section 6.2.3)

The OMSAI kit includes all the example programs used in this section, as well
as command files to build and run them. After installing the kit, the source and
command files are located in the AEST subdirectory of SYS$EXAMPLES. The
command files must be executed in the following order:

1. First execute BUILD_MYMATH_AXP.COM on an OpenVMS Alpha system.
The HP C compiler is required.

2. Then execute BUILD_MYMATH_IA64.COM on an OpenVMS I64 system. The
HP C compiler is required.

6–2 Translating and Replacing OpenVMS Alpha Shareable Images

Translating and Replacing OpenVMS Alpha Shareable Images
6.2 Procedures for Building Shareable-Image Variants

The procedure descriptions all follow the same format:

• A description of the types of images being created (for example, a translated
main program calling a translated shareable image).

• Command or code sequences introduced by headers demonstrate the
procedure.

• When necessary, descriptions clarify what the command or code sequences are
doing.

Note

These procedures are a simplified illustration of the fundamental steps
of creating interoperable images and they do not consider all cases.
You might have to alter this procedure to match your application
requirements.

6.2.1 Building the Original OpenVMS Alpha Shareable Image
First, create and build the OpenVMS Alpha shareable image:

SYMBOL_VECTOR=(myadd=PROCEDURE,-
mysub=PROCEDURE,-
mydiv=PROCEDURE,-
mymul=PROCEDURE)
GSMATCH=LEQUAL,2,0
[EXIT]

Compile MYMATH, name the object file AXP_MYMATH, and link it to create the
shareable image.

Then create the OpenVMS Alpha main image:

$ CC MYMAIN/OBJ=AXP_MYMAIN.OBJ
$ LINK AXP_MYMAIN.OBJ,SYS$INPUT/OPTIONS
AXP_MYMATH/SHAREABLE
[EXIT]

Compile MYMAIN, name the object file AXP_MYMAIN, and link it to the
shareable image AXP_MYMATH.

Then define logical name and run main image:

$ DEFINE AXP_MYMATH YOUR$DISK:[YOUR_DIR]AXP_MYMATH.EXE;
$ RUN/NODEBUG AXP_MYMAIN

Define the logical name AXP_MYMATH so that it points to the location of AXP_
MYMATH.EXE.

6.2.2 Creating the Translated Shareable Image
This section describes two procedures to be carried out on an OpenVMS Alpha
system:

• Create a translated shareable image and a translated main image that calls
it (Section 6.2.2.1).

• Create a translated image and a native main image that calls it
(Section 6.2.2.2).

Translating and Replacing OpenVMS Alpha Shareable Images 6–3

Translating and Replacing OpenVMS Alpha Shareable Images
6.2 Procedures for Building Shareable-Image Variants

6.2.2.1 Translated Main Image Calls Translated Shareable Image
Suppose you have a main image that uses a shareable library on OpenVMS Alpha
system. Translate both of them by entering the following commands:

$ AEST AXP_MYMAIN
$ AEST AXP_MYMATH

The translated images receive the names AXP_MYMAIN_AV .EXE and AXP_
MYMATH_AV.EXE, respectively. If you simply run AXP_MYMAIN_AV on an
OpenVMS I64 system, it will fail because the OpenVMS I64 system will look for
AXP_MYMATH_AV.EXE in default directories.

After you translate the images, you have two possibilities: define a logical name
pointing to the actual place where AXP_MYMATH_AV.EXE resides (preferred), or
copy the translated image into one of these default directories.

Enter this command to define a logical name for the location of AXP_MYMATH_
AV.EXE:

$ DEFINE AXP_MYMATH_AV YOUR$DISK:[YOUR_DIR]AXP_MYMATH_AV.EXE

Now you can run your translated image:

$ RUN AXP_MYMAIN_AV

6.2.2.2 Native Main Image Calls Translated Shareable Image
This procedure shows how to translate the OpenVMS Alpha shareable image and
to create a native main image that calls it.

To translate an OpenVMS Alpha shareable image, enter this command:

$ AEST AXP_MYMATH

Create a native version of the main image MYMAIN called IA64_MYMAIN. Use
the /TIE qualifier when compiling the source and the /NONATIVE_ONLY qualifier
when linking the object file. Link IA64_MYMAIN and AXP_MYMATH_AV
together in the same way you would link IA64_MYMAIN and a native shareable
image. For example:

$ CC/TIE MYMAIN/OBJ=IA64_MYMAIN
$ LINK/NONATIVE_ONLY IA64_MYMAIN, SYS$INPUT:/OPTIONS
AXP_MYMATH_AV.EXE/SHAREABLE
[EXIT]

Define the logical name MYMATH_AV so that it points to the location of
AXP_MYMATH_AV.EXE. When you run MYMAIN, it successfully calls AXP_
MYMATH_AV. For example:

$ DEFINE AXP_MYMATH_AV YOUR$DISK:[YOUR_DIR]AXP_MYMATH_AV.EXE;
$ RUN IA64_MYMAIN

6.2.3 Building a Replacement Native Shareable Image
Compile the native I64 shareable image using the /TIE qualifier, and link it using
the /NONATIVE_ONLY qualifier. Include a linker options file that orders the
entries according to the order in the original OpenVMS Alpha shareable image.
For example:

6–4 Translating and Replacing OpenVMS Alpha Shareable Images

Translating and Replacing OpenVMS Alpha Shareable Images
6.2 Procedures for Building Shareable-Image Variants

$ CC/TIE MYMATH/OBJ=IA64_MYMATH
$ LINK/SHAREABLE/NONATIVE_ONLY IA64_MYMATH, SYS$INPUT:/OPTIONS
SYMBOL_VECTOR=(myadd=PROCEDURE,-
mysub=PROCEDURE,-
mydiv=PROCEDURE,-
mymul=PROCEDURE)
GSMATCH=LEQUAL,2,0
[EXIT]

Then define the logical name and run the main image:

$ DEFINE AXP_MYMATH_AV YOUR$DISK:[YOUR_DIR]IA64_MYMATH.EXE;
$ RUN/NODEBUG AXP_MYMAIN_AV

Translating and Replacing OpenVMS Alpha Shareable Images 6–5

Part III
Reference Information

Part III contains the following information:

A detailed description of the AEST command line and
qualifiers

Appendix A

An alphabetical listing of all AEST messages with
explanations and recommended user actions

Appendix B

Debugging problems with translations Appendix C

A
Command Summaries

AEST
The AEST utility translates OpenVMS Alpha executable and shareable images
into functionally equivalent OpenVMS I64 system images. AEST also allows you
to analyze OpenVMS Alpha images to assess their translatability.

Format

AEST[/qualifier,...] image[.EXE]

Qualifier Default

/AIIF None

/AUDIT None

/DEBUG /NODEBUG

/DUMP /NODUMP

/EXECUTABLE /EXECUTABLE

/INTERPRET /NOINTERPRET

/LIST /LIST

/VERBOSE /NOVERBOSE

/AIIF
Instructs AEST to use the specified Alpha Image Information File (AIIF) when
translating current image. Normally, AEST forms the translated image references
by adding the suffix _AV to Alpha image names. The /AIIF qualifier allows you to
change this behavior.

Default None

Format /[NO]AIIF=(file-path[,file-path...])

Qualifier Values filespec[,filespec...]

Description

Alpha Image Information File (.AIIF file) contains the information used by AEST
to rename the image references in the Alpha file that is currently translated.
Such files are used to relink the translated image against the different shareable
images and to modify fixup information.

The .AIIF file describes the properties of a shareable image’s exported interface,
that is, the precise locations that are described in the image’s symbol vector.
These files contain mapping between Alpha and I64 entry points.

The /NOAIIF qualifier tells AEST not to use the specified AIIF file, even if it is
found.

Command Summaries A–1

Command Summaries

AEST searches for .AIIF files in the following locations and in the following order:

1. The directory or directories specified as values to the /AIIF qualifier in the
AEST command line.

2. Locations specified by logical names. The logical name for each AIIF file must
be formed appropriately from the shareable image list plus the extension
(.AIIF). For example, for the dynamic image SYS$PUBLIC_VECTORS, the
appropriate logical name would be SYS$PUBLIC_VECTORS.AIIF.

3. The current directory.

4. The directory pointed to by the SYS$LIBRARY logical name.

/AUDIT
Instructs AEST to analyze the input image and to summarize its migration
characteristics, but not to perform image translation. Note that, by default,
AEST performs an audit before it translates the image, but it does not print
verbose information into list file.

Format /AUDIT

Qualifier Values None

Description

The summary specifies:

• Whether the image is translatable

• Source language or languages of the image (if known)

The audit summary is a one-line description of an image’s migration
characteristics that may help you decide what migration option to choose for
the image. You can find the summary information in the list file after all other
messages. Example A–1 shows the format of the summary.

Example A–1 Summary Format

<SUM> Image name Tran Languages
<SUM> -- ---------------- ---- ----------------
<SUM> AST_00:[GROUP.TEST]DHRYSTONE.EXE YES C

The image name column on the left provides the full file specification of the input
image.

The two columns on the right define the image’s migration characteristics:

Tran YES or NO to indicate whether the image is translatable.

Languages Lists the source languages identified in the image’s debug symbol
table (DST). The languages pertain only to the image being
analyzed and not to any shareable images it calls.

By issuing a series of AEST/AUDIT commands and then using OpenVMS
commands to extract the summary information, you can build a file of summary
descriptions. For example:

A–2 Command Summaries

Command Summaries

$ AEST/AUDIT IMAGE1
$ AEST/AUDIT IMAGE2
.
.
.
$ AEST/AUDIT IMAGEn
$ SEARCH/OUTPUT=TEMP.1 *.LIS "<SUM>"
$ SEARCH/OUTPUT=TEMP.2 TEMP.1 "<SUM>"
$ SORT/NODUPLICATE TEMP.2 TEMP.3
$ PRINT TEMP.3

Using /AUDIT forces the following AEST qualifiers:

/NOEXECUTABLE

For example:

$ AEST/AUDIT DHRYSTONE

This example requests an audit summary for the sample program
DHRYSTONE.EXE. The list file DHRYSTONE_AV.LIS contains the following
text:

$ AEST/AUDIT DHRYSTONE
AEST (V1.0, Bld DEV_0.8/Feb 21 2005)
$
$ TYPE DHRYSTONE_AV.LIS
AEST (V1.0, Bld DEV_0.8/Feb 21 2005)
Image "DHRYSTONE", "V1.0", 24-FEB-2005 15:29:42.22
<SUM> Image name Tran Languages
<SUM> -- ---- ----------------
<SUM> 1DGA120:[VERIFICATION.BINTRAN.EXAMPLES]DHRYSTONE.EXE YES C
$

/DEBUG
Instructss AEST to produce all verbose messages.

Default The default is /DEBUG if the input image was linked with the
/DEBUG qualifier or /NODEBUG if the input image was linked
with /NODEBUG.

Format /[NO]DEBUG

Qualifier Value None

/DUMP

Default /DUMP=NONE

Format /DUMP=(list)

Qualifier Values One or a combination of:
ALPHA[=list], IA64[=list], INTERNAL[=list]

Description

/DUMP instructs AEST to print information about the source Alpha image, the
resulting I64 image, and possibly some internal information into a listing file.

If /DUMP is specified it is equivalent to:

/DUMP=(ALPHA=ALL,IA64=ALL,INTERNAL=NONE)

Command Summaries A–3

Command Summaries

/DUMP=([...] ALPHA[=...])

Default ALL

Format /DUMP=(ALPHA[=keywords])

Qualifier Values NONE
ALL—default, prints all information listed below, except for code
NONE—prevents printing source image information
HEADERS—prints image headers
SECTIONS—prints list of image sections
SHR_IMAGES—prints list of shared images referred to by the
translated image
FIXUPS—prints list of fixups
RELOCATIONS—prints list of relocations
SYMB_VECTOR—prints contents of symbol vector (if present)
SYMB_TABLE—prints contents of symbol table (if present)
INSTRUCTIONS—prints Alpha code instructions
BLOCKS—prints Alpha code basic blocks with instructions
ENTRY_POINTS—prints list of found entry points
VERBOSE—adds some verbosity to listing, particularly to the
section list

/DUMP=([...] IA64 [=...])

Default ALL

Format /DUMP=(IA64[=keywords])

Qualifier Values ALL—default, prints all information listed below (except for
BUNDLES)
NONE—prevents printing of translated image information
HEADERS—prints translated image headers (in internal
representation)
SEGMENTS—prints brief list of translated image segments
SHR_IMAGES—prints list of shared images referred by the
translated image
FIXUPS—prints list of fixups
RELOCATIONS—prints list of relocations
SYMB_VECTOR—prints contents of symbol vector (if present)
SYMB_TABLE—prints contents of symbol table (if present)
BUNDLES—prints generated I64 code
BLOCKS—prints Alpha basic blocks together with correspondent
I64 bundles. Initialization code (and other generated I64 code) is
printed as well.
TII—prints TIE information structures
TRANS_VECTOR—prints transfer vector
GOT—prints global offset table contents

/DUMP=([...,] INTERNAL [=...])
This qualifier is intended for problem-solving purposes only. Normally, you do not
need the corresponding printouts.

Default ALL

Format /DUMP=(INTERNAL[=keywords])

Keywords ALL—prints all information below
NONE—prevents printing
INTFIX—prints internal fixups (don´t appear in translated image)
INTSYM—prints internal symbols (don´t appear in translated
image)
FDS—prints list of function descriptors generated by translator.

A–4 Command Summaries

Command Summaries

/EXECUTABLE
Enables the creation of a translated image and, optionally, includes a file
specification.

Default /EXECUTABLE

Format /EXECUTABLE [=filespec]

Qualifier Values filespec

Description

By default, AEST creates a translated image unless the command line specifies
qualifiers that are incompatible (the /AUDIT qualifier, for example), and as long
as AEST does not encounter error conditions that prevent image translation. If
AEST issues ERROR or FATAL messages, it does not create a translated image.

If you do not provide a file specification, AEST writes the translated image to the
current directory and names it by appending _AV to the input image’s file name.
For example, if the name of the OpenVMS Alpha image is PROGRAM.EXE, the
default name of the translated image is PROGRAM_AV.EXE.

Note

A file name cannot exceed 39 characters in length. Because of this
limitation, AEST truncates any input image file name that exceeds 36
characters to append the characters _AV.

/INTERPRET
Controls whether image´s code should be translated or just interpreted in run-
time.

Default /NOINTERPRET

Format /INTERPRET

Qualifier Values None

Description

AEST tries to find, parse, and translate as much Alpha code as possible to
minimize the need for interpreting Alpha code at run time. By default, AEST
uses the EISD$V_EXE ISD flag to translate all code that it finds in image
sections marked as "executable."

If you specify /INTERPRET, AEST still analyzes all the code found in "executable"
Alpha image sections and creates corresponding structures in the resulting I64
image, but it did not generate corresponding I64 code. This minimizes the AEST
execution time and virtual memory required for translation.

Note that run-time performance of a translated image using /INTERPRET will be
slower than one where the code is translated.

/LIST
Requests a list file and, optionally, specifies a file name.

Default /LIST

Format /LIST [=filespec]

Command Summaries A–5

Command Summaries

Qualifier Values filespec
Identifies a file specification for the list file.

Description

If you do not specify a file specification, AEST writes the list file to the current
directory, names it by appending _AV to the input image’s file name, and uses the
extension LIS. For example, if the input image is SIEVE.EXE, the default list file
is called SIEVE_AV.LIS.

/VERBOSE
Instructs AEST to produce all verbose messages.

Default /NOVERBOSE

Format /[NO]VERBOSE

Qualifier Value None

This example demonstrates using the /VERBOSE option.

$ AEST/VERBOSE DHRYSTONE
AEST V1.0 DEV_0.8 (Feb 21 2005) starting at Feb 25 2005 15:38:05 with command line:
AEST/VERBOSE DHRYSTONE Reading Source image...
Done.
Analyzing Alpha image code...
Done.
Translating data structures...
Done.
Translating code...
Done.
Adding init code...
Done.
Building TIE information...
Done.
Processing external symbols...
Done.
Fixing internal structures...
Building SDS...
Fixing code...
Freeing code...
Building TIE segment...
Fixing data...
Done.
Preparing to write target image...
Done.
Writing target image...
Done.
%AEST-I-TRANSOK, Translation completed successfully
$
$ TYPE DHRYSTONE_AV.LIS
AEST V1.0 DEV_0.8 (Feb 21 2005) starting at Feb 25 2005 15:38:05 with command line:
AEST/VERBOSE DHRYSTONE %AEST-I-TRANSOK, Translation completed successfully
$

A–6 Command Summaries

B
Error and Status Messages

This appendix discusses the following topics:

Interpreting OMSAI messages Section B.1

Alphabetical list of AEST messages Section B.2

B.1 Interpreting AEST Messages
AEST error and status messages identify many different conditions within an
image. For example, AEST can identify code that prevents successful translation.
Each message has one of the following severity levels:

• INFO messages provide descriptive information about the AEST run.

• WARNING messages describe questionable code encountered that you need
to investigate. WARNING messages do not prevent AEST from creating a
translated image.

• ERROR messages indicate a problem in the code that prevents AEST from
translating the input image.

• FATAL messages indicate a problem that prevents the translation altogether
(input file not found, for example).

Section B.2 provides explanations for each message and, when appropriate,
suggests a user action. An AEST message as it is displayed or written to the log
file consists of the facility name (AEST), a letter indicating the severity level (I,
W, E, or F), a message identifier, and a brief explanation of the error or status.
For example:

%AEST-E-HASSECNAME, Image contains secondary image name -- not translatable

B.2 AEST Messages Descriptions
AIIF_COLLISION

Explanation: .AIIF file contains inconsistent information. Match control
fields for some newly linked images are defined more than once, and the
definitions are contradictory.

BADEXE
Explanation: Executable image has a bad format. This problem occurs when
a user tries to translate a file that is not a valid OpenVMS Alpha image.

BADVEST
Explanation: OpenVMS Alpha image to be translated is produced by
unsupported VEST versions (prior to VEST 1.0)

Error and Status Messages B–1

Error and Status Messages
B.2 AEST Messages Descriptions

HASSECNAME
Explanation: The translatable image is a CLI image. The translation of CLI
images is not allowed.

INVALID_SYMBOL
Explanation: The Symbol virtual address is out of range (it does not find
any translated segment).

ISDINIT
Explanation: The image contains an OpenVMS initialization section, and
therefore, is not translatable.

ISDRESIDENT
Explanation: The image contains a memory resident section, and therefore,
is not translatable.

LNKEXEC
Explanation: Translatable image is linked against a specific OpenVMS
Alpha kernel version and is not translatable.

LNKSYS
Explanation: Translatable image is linked against OpenVMS Alpha and
references symbols in it. It is not translatable.

OPENIN
Explanation: Image file to be translated cannot be opened.

PRIVOPC
Explanation: Privileged instruction (opcode) was detected in the OpenVMS
Alpha image. Translated image has been generated, but the execution of this
image will fail if execution with privileged Alpha instruction is requested.

RTLNOTSUPP
Explanation: The OpenVMS Alpha image to be translated was linked
against a run-time library not officially supported by OMSAI. The translated
image has been generated, but the correct execution of this image is not
guaranteed.

TRANSERROR
Explanation: Translation completed with errors, although executable
image has been created. It is likely that the translated image will not work
correctly, so please check all error messages issued during the translation.

TRANSFATAL
Explanation: Translation did not complete because of fatal errors and
translated executable image was not generated. The translation of this image
is impossible.

TRANSOK
Explanation: Translation completed successfully and a translated image has
been generated.

B–2 Error and Status Messages

Error and Status Messages
B.2 AEST Messages Descriptions

TRANSWARN
Explanation: Translation completed with some warnings, but translated
executable image was generated. Please review warning message before
using translated image.

Error and Status Messages B–3

C
Translation and Performance Restrictions

This appendix discusses the following topics:

How to identify images with translation or performance
restrictions

Section C.1

Images that cannot be translated Section C.2

Images that translate with WARNING error messages Section C.3

Images with compatibility problems not detectable during
translation

Section C.4

C.1 Identifying Restrictions and Performance Issues
You can use the Alpha Environment Software Translator (AEST) utility to
identify most translation restrictions in OpenVMS Alpha images. During the code
analysis phase, AEST issues messages that flag and describe problematic code it
encounters. If any message severity is either FATAL or ERROR, AEST does not
create a translated image. If the most severe message level is WARNING, AEST
creates a translated image that can run properly on an OpenVMS I64 system.
However, HP recommends that you examine each WARNING message carefully.

This appendix identifies specific AEST messages that correspond to restrictions
and performance issues. See the message explanations in Appendix B for
descriptions of the coding problems identified.

C.2 Untranslatable Images
Images described in Table C–1 incur FATAL or ERROR messages.

Table C–1 Untranslatable Images

Description Message

Images linked with OpenVMS Alpha version
earlier than 6.1

BADEXE

Images that have user-written system services or
other nonuser-mode code

HASSECNAME
LNKEXEC
ISDINIT
ISPROTECT

Images linked against a specific version of
OpenVMS

LNKSYS

VESTed binary images produced by DECmigrate
tool in case the original OpenVMS VAX image
was linked on an OS version earlier than 5.5

BADVEST

Translation and Performance Restrictions C–1

Translation and Performance Restrictions
C.3 Images Translatable with Warnings

C.3 Images Translatable with Warnings
Images described in Table C-2 incur WARNING messages. HP recommends that
you examine each WARNING message carefully. You might determine that the
code flagged is not likely to interfere with the image running translated. In other
cases, you might need to take steps to ensure that the translated version of the
image executes properly on an OpenVMS I64 system. You might need to make
changes to the source code, if available, and then recompile and relink the image
before translating; or you might need to relink the image with different options.

Note that AEST can also issue WARNING messages for reasons other than those
listed in Table C–2.

Table C–2 Images Translatable with Warnings

Description Message

Images that contain privileged instructions PRIVOPC

Images that reference standard OpenVMS run-
time libraries not supported in the current
version of OMSAI

RTLNOTSUPP

C.4 Images with Undetectable Translation Problems
Unfortunately, some problems cannot be found during the translation of
OpenVMS Alpha images and occur only when translated applications are running
on OpenVMS I64 system. These problems include the following:

• Images that use user-mode thread managers other than DECthreads/Pthreads

• Images that implement their own thread management

• Images that use system services to directly access kernel threads
mechanisms.

C–2 Translation and Performance Restrictions

