 |
HP Open Source Security for OpenVMS Volume 2: HP SSL for OpenVMS > CRYPTO Application
Programming Interface (API) Reference
EVP_CIPHER_CTX_init
NAMEEVP_CIPHER_CTX_init, EVP_EncryptInit_ex, EVP_EncryptUpdate, EVP_EncryptFinal_ex, EVP_DecryptInit_ex, EVP_DecryptUpdate, EVP_DecryptFinal_ex, EVP_CipherInit_ex, EVP_CipherUpdate, EVP_CipherFinal_ex, EVP_CIPHER_CTX_set_key_length, EVP_CIPHER_CTX_ctrl, EVP_CIPHER_CTX_cleanup, EVP_EncryptInit, EVP_EncryptFinal, EVP_DecryptInit, EVP_DecryptFinal, EVP_CipherInit, EVP_CipherFinal, EVP_get_cipherbyname, EVP_get_cipherbynid, EVP_get_cipherbyobj, EVP_CIPHER_nid, EVP_CIPHER_block_size, EVP_CIPHER_key_length, EVP_CIPHER_iv_length, EVP_CIPHER_flags, EVP_CIPHER_mode, EVP_CIPHER_type, EVP_CIPHER_CTX_cipher, EVP_CIPHER_CTX_nid, EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length, EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data, EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type, EVP_CIPHER_CTX_flags, EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param, EVP_CIPHER_CTX_set_padding — EVP cipher routines Synopsis#include <openssl/evp.h> int
EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *a); int EVP_EncryptInit_ex(EVP_CIPHER_CTX
*ctx, const EVP_CIPHER *type, ENGINE *impl, unsigned char *key,
unsigned char *iv); int EVP_EncryptUpdate(EVP_CIPHER_CTX
*ctx, unsigned char *out, int *outl, unsigned char *in, int inl); int
EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int
*outl); int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const
EVP_CIPHER *type, ENGINE *impl, unsigned char *key, unsigned char
*iv); int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned
char *out, int *outl, unsigned char *in, int inl); int
EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, int
*outl); int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const
EVP_CIPHER *type, ENGINE *impl, unsigned char *key, unsigned char
*iv, int enc); int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx,
unsigned char *out, int *outl, unsigned char *in, int inl); int
EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, int
*outl); int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const
EVP_CIPHER *type, unsigned char *key, unsigned char *iv); int
EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, �unsigned char *out, int *outl); int
EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, unsigned
char *key, unsigned char *iv); int EVP_DecryptFinal(EVP_CIPHER_CTX
*ctx, unsigned char *outm, int *outl); int EVP_CipherInit(EVP_CIPHER_CTX
*ctx, const EVP_CIPHER *type, unsigned char *key, unsigned char
*iv, int enc); int EVP_CipherFinal(EVP_CIPHER_CTX *ctx,
unsigned char *outm, int *outl); int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX
*x, int padding); int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX
*x, int keylen); int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX
*ctx, int type, int arg, void *ptr); int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX
*a); const EVP_CIPHER *EVP_get_cipherbyname(const char
*name); #define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a)) #define
EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a)) #define
EVP_CIPHER_nid(e) ((e)->nid) #define EVP_CIPHER_block_size(e) ((e)->block_size) #define
EVP_CIPHER_key_length(e) ((e)->key_len) #define
EVP_CIPHER_iv_length(e) ((e)->iv_len) #define
EVP_CIPHER_flags(e) ((e)->flags) #define EVP_CIPHER_mode(e) ((e)->flags) & EVP_CIPH_MODE)
int EVP_CIPHER_type(const EVP_CIPHER *ctx); #define EVP_CIPHER_CTX_cipher(e) ((e)->cipher) #define
EVP_CIPHER_CTX_nid(e) ((e)->cipher->nid) #define
EVP_CIPHER_CTX_block_size(e) ((e)->cipher->block_size) #define
EVP_CIPHER_CTX_key_length(e) ((e)->key_len) #define
EVP_CIPHER_CTX_iv_length(e) ((e)->cipher->iv_len) #define
EVP_CIPHER_CTX_get_app_data(e) ((e)->app_data) #define
EVP_CIPHER_CTX_set_app_data(e,d) ((e)->app_data=(char *)(d)) #define
EVP_CIPHER_CTX_type(c) EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c)) #define
EVP_CIPHER_CTX_flags(e) ((e)->cipher->flags) #define
EVP_CIPHER_CTX_mode(e) ((e)->cipher->flags & EVP_CIPH_MODE)
int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type); int
EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type); DESCRIPTIONThe EVP cipher routines are a high level interface to certain
symmetric ciphers. EVP_CIPHER_CTX_init() initializes cipher contex ctx. EVP_EncryptInit_ex() sets up cipher context ctx for
encryption with cipher type from ENGINE impl. ctx must be
initialized before calling this function. type is
normally supplied by a function such as EVP_des_cbc(). If impl is
NULL then the default implementation is used. key is
the symmetric key to use and iv is the IV to
use (if necessary), the actual number of bytes used for the key
and IV depends on the cipher. It is possible to set all parameters
to NULL except type in an initial call and
supply the remaining parameters in subsequent calls, all of which
have type set to NULL. This is done when the
default cipher parameters are not appropriate. EVP_EncryptUpdate() encrypts inl bytes
from the buffer in and writes the encrypted
version to out. This function can be called
multiple times to encrypt successive blocks of data. The amount
of data written depends on the block alignment of the encrypted
data: as a result the amount of data written may be anything from
zero bytes to (inl + cipher_block_size - 1) so outl should
contain sufficient room. The actual number of bytes written is placed
in outl. If padding is enabled (the default) then EVP_EncryptFinal_ex()
encrypts the "final" data, that is any data that remains in a partial
block. It uses standard block padding (aka PKCS
padding). The encrypted final data is written to out which
should have sufficient space for one cipher block. The number of
bytes written is placed in outl. After this
function is called the encryption operation is finished and no further
calls to EVP_EncryptUpdate() should be made. If padding is disabled then EVP_EncryptFinal_ex() will not
encrypt any more data and it will return an error if any data remains
in a partial block: that is if the total data length is not a multiple
of the block size. EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex()
are the corresponding decryption operations. EVP_DecryptFinal()
will return an error code if padding is enabled and the final block
is not correctly formatted. The parameters and restrictions are
identical to the encryption operations except that if padding is
enabled the decrypted data buffer out passed
to EVP_DecryptUpdate() should have sufficient room for (inl +
cipher_block_size) bytes unless the cipher block size is 1 in which
case inl bytes is sufficient. EVP_CipherInit_ex(), EVP_CipherUpdate() and EVP_CipherFinal_ex()
are functions that can be used for decryption or encryption. The
operation performed depends on the value of the enc parameter.
It should be set to 1 for encryption, 0 for decryption and -1 to
leave the value unchanged (the actual value of 'enc' being supplied
in a previous call). EVP_CIPHER_CTX_cleanup() clears all information from a cipher
context and free up any allocated memory associate with it. It should
be called after all operations using a cipher are complete so sensitive
information does not remain in memory. EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit()
behave in a similar way to EVP_EncryptInit_ex(), EVP_DecryptInit_ex
and EVP_CipherInit_ex() except the ctx paramter
does not need to be initialized and they always use the default
cipher implementation. EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal()
behave in a similar way to EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex()
and EVP_CipherFinal_ex() except ctx is automatically cleaned
up after the call. EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
return an EVP_CIPHER structure when passed a cipher name, a NID
or an ASN1_OBJECT structure. EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of
a cipher when passed an EVP_CIPHER or EVP_CIPHER_CTX structure.
The actual NID value is an internal value which may not have a corresponding
OBJECT IDENTIFIER. EVP_CIPHER_CTX_set_padding() enables or disables padding.
By default encryption operations are padded using standard block
padding and the padding is checked and removed when decrypting.
If the pad parameter is zero then no padding
is performed, the total amount of data encrypted or decrypted must
then be a multiple of the block size or an error will occur. EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return
the key length of a cipher when passed an EVP_CIPHER or EVP_CIPHER_CTX structure.
The constant EVP_MAX_KEY_LENGTH is the maximum
key length for all ciphers. Note: although EVP_CIPHER_key_length()
is fixed for a given cipher, the value of EVP_CIPHER_CTX_key_length()
may be different for variable key length ciphers. EVP_CIPHER_CTX_set_key_length() sets the Akey length of the
cipher ctx. If the cipher is a fixed length cipher then attempting
to set the key length to any value other than the fixed value is
an error. EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return
the IV length of a cipher when passed an EVP_CIPHER or EVP_CIPHER_CTX.
It will return zero if the cipher does not use an IV. The constant EVP_MAX_IV_LENGTH is
the maximum IV length for all ciphers. EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return
the block size of a cipher when passed an EVP_CIPHER or EVP_CIPHER_CTX structure.
The constant EVP_MAX_IV_LENGTH is also the maximum
block length for all ciphers. EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type
of the passed cipher or context. This "type" is the actual NID of
the cipher OBJECT IDENTIFIER as such it ignores the cipher parameters
and 40 bit RC2 and 128 bit RC2 have the same NID. If the cipher
does not have an object identifier or does not have ASN1 support
this function will return NID_undef. EVP_CIPHER_CTX_cipher() returns the EVP_CIPHER structure
when passed an EVP_CIPHER_CTX structure. EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block
cipher mode: EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE, EVP_CIPH_CFB_MODE
or EVP_CIPH_OFB_MODE. If the cipher is a stream cipher then EVP_CIPH_STREAM_CIPHER
is returned. EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier "parameter"
based on the passed cipher. This will typically include any parameters
and an IV. The cipher IV (if any) must be set when this call is
made. This call should be made before the cipher is actually "used"
(before any EVP_EncryptUpdate(), EVP_DecryptUpdate() calls for example).
This function may fail if the cipher does not have any ASN1 support. EVP_CIPHER_asn1_to_param() sets the cipher parameters based
on an ASN1 AlgorithmIdentifier "parameter". The precise effect depends
on the cipher In the case of RC2, for example, it will set the IV
and effective key length. This function should be called after the
base cipher type is set but before the key is set. For example EVP_CipherInit()
will be called with the IV and key set to NULL, EVP_CIPHER_asn1_to_param()
will be called and finally EVP_CipherInit() again with all parameters
except the key set to NULL. It is possible for this function to
fail if the cipher does not have any ASN1 support or the parameters
cannot be set (for example the RC2 effective key length is not supported. EVP_CIPHER_CTX_ctrl() allows various cipher specific parameters
to be determined and set. Currently only the RC2 effective key length
and the number of rounds of RC5 can be set. RETURN VALUESEVP_CIPHER_CTX_init, EVP_EncryptInit_ex(), EVP_EncryptUpdate()
and EVP_EncryptFinal_ex() return 1 for success and 0 for failure. EVP_DecryptInit_ex() and EVP_DecryptUpdate() return 1 for
success and 0 for failure. EVP_DecryptFinal_ex() returns 0 if the
decrypt failed or 1 for success. EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for success
and 0 for failure. EVP_CipherFinal_ex() returns 0 for a decryption
failure or 1 for success. EVP_CIPHER_CTX_cleanup() returns 1 for success and 0 for failure. EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
return an EVP_CIPHER structure or NULL on error. EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID. EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return
the block size. EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return
the key length. EVP_CIPHER_CTX_set_padding() always returns 1. EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return
the IV length or zero if the cipher does not use an IV. EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID
of the cipher's OBJECT IDENTIFIER or NID_undef if it has no defined
OBJECT IDENTIFIER. EVP_CIPHER_CTX_cipher() returns an EVP_CIPHER structure. EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param()
return 1 for success or zero for failure. CIPHER LISTINGAll algorithms have a fixed key length unless otherwise stated. EVP_enc_null() Null cipher: does nothing. EVP_des_cbc(void), EVP_des_ecb(void), EVP_des_cfb(void),
EVP_des_ofb(void) DES in CBC, ECB, CFB and OFB modes respectively. EVP_des_ede_cbc(void), EVP_des_ede(), EVP_des_ede_ofb(void),
EVP_des_ede_cfb(void) Two key triple DES in CBC, ECB, CFB and OFB modes respectively. EVP_des_ede3_cbc(void), EVP_des_ede3(), EVP_des_ede3_ofb(void),
EVP_des_ede3_cfb(void) Three key triple DES in CBC, ECB, CFB and OFB modes respectively. EVP_desx_cbc(void) DESX algorithm in CBC mode. EVP_rc4(void) RC4 stream cipher. This is a variable key length cipher with
default key length 128 bits. EVP_rc4_40(void) RC4 stream cipher with 40 bit key length. This is obsolete
and new code should use EVP_rc4() and the EVP_CIPHER_CTX_set_key_length()
function. EVP_idea_cbc() EVP_idea_ecb(void), EVP_idea_cfb(void),
EVP_idea_ofb(void), EVP_idea_cbc(void) IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respectively. EVP_rc2_cbc(void), EVP_rc2_ecb(void), EVP_rc2_cfb(void),
EVP_rc2_ofb(void) RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
This is a variable key length cipher with an additional parameter
called "effective key bits" or "effective key length". By default
both are set to 128 bits. EVP_rc2_40_cbc(void), EVP_rc2_64_cbc(void) RC2 algorithm in CBC mode with a default key length and effective
key length of 40 and 64 bits. These are obsolete and new code should
use EVP_rc2_cbc(), EVP_CIPHER_CTX_set_key_length() and EVP_CIPHER_CTX_ctrl()
to set the key length and effective key length. EVP_bf_cbc(void), EVP_bf_ecb(void), EVP_bf_cfb(void),
EVP_bf_ofb(void); Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes
respectively. This is a variable key length cipher. EVP_cast5_cbc(void), EVP_cast5_ecb(void), EVP_cast5_cfb(void),
EVP_cast5_ofb(void) CAST encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
This is a variable key length cipher. EVP_rc5_32_12_16_cbc(void), EVP_rc5_32_12_16_ecb(void),
EVP_rc5_32_12_16_cfb(void), EVP_rc5_32_12_16_ofb(void) RC5 !encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
This is a variable key length cipher with an additional "number
of rounds" parameter. By default the key length is set to 128 bits
and 12 rounds.
NOTESWhere possible the EVP interface to symmetric
ciphers should be used in preference to the low level interfaces.
This is because the code then becomes transparent to the cipher
used and much more flexible. PKCS padding works by adding n padding
bytes of value n to make the total length of
the encrypted data a multiple of the block size. Padding is always
added so if the data is already a multiple of the block size n will equal
the block size. For example if the block size is 8 and 11 bytes
are to be encrypted then 5 padding bytes of value 5 will be added. When decrypting the final block is checked to see if it has
the correct form. Although the decryption operation can produce an error if
padding is enabled, it is not a strong test that the input data
or key is correct. A random block has better than 1 in 256 chance
of being of the correct format and problems with the input data
earlier on will not produce a final decrypt error. If padding is disabled then the decryption operation will
always succeed if the total amount of data decrypted is a multiple
of the block size. The functions EVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(),
EVP_CipherInit() and EVP_CipherFinal() are obsolete but are retained
for compatibility with existing code. New code should use EVP_EncryptInit_ex(),
EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(), EVP_CipherInit_ex()
and EVP_CipherFinal_ex() because they can reuse an existing context
without allocating and freeing it up on each call. RestrictionsFor RC5 the number of rounds can currently only be set to
8, 12 or 16. This is a limitation of the current RC5 code rather
than the EVP interface. EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the
internal ciphers with default key lengths. If custom ciphers exceed
these values the results are unpredictable. This is because it has
become standard practice to define a generic key as a fixed unsigned
char array containing EVP_MAX_KEY_LENGTH bytes. The ASN1 code is incomplete (and sometimes inaccurate) it
has only been tested for certain common S/MIME ciphers (RC2, DES,
triple DES) in CBC mode. EXAMPLESGet the number of rounds used in RC5: int nrounds; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC5_ROUNDS, 0, &nrounds);
|
Get the RC2 effective key length: int key_bits; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC2_KEY_BITS, 0, &key_bits);
|
Set the number of rounds used in RC5: int nrounds; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC5_ROUNDS, nrounds, NULL);
|
Set the effective key length used in RC2: int key_bits; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC2_KEY_BITS, key_bits, NULL);
|
Encrypt a string using blowfish:  |
int do_crypt(char *outfile) { unsigned char outbuf[1024]; int outlen, tmplen; /* Bogus key and IV: we'd normally set these from * another source. */ unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; unsigned char iv[] = {1,2,3,4,5,6,7,8}; char intext[] = "Some Crypto Text"; EVP_CIPHER_CTX ctx; FILE *out;� EVP_CIPHER_CTX_init(&ctx); EVP_EncryptInit_ex(&ctx, EVP_bf_cbc(), NULL, key, iv); if(!EVP_EncryptUpdate(&ctx, outbuf, &outlen, intext, strlen(intext))) { /* Error */ return 0; } /* Buffer passed to EVP_EncryptFinal() must be after data just * encrypted to avoid overwriting it. */ if(!EVP_EncryptFinal_ex(&ctx, outbuf + outlen, &tmplen)) { /* Error */ return 0; } outlen += tmplen; EVP_CIPHER_CTX_cleanup(&ctx); /* Need binary mode for fopen because encrypted data is * binary data. Also cannot use strlen() on it because * it wont be null terminated and may contain embedded * nulls. */ out = fopen(outfile, "wb"); fwrite(outbuf, 1, outlen, out); fclose(out); return 1; }
|
 |
The ciphertext from the above example can be decrypted using
the openssl utility with the command line: S<openssl bf -in cipher.bin -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708 -d>
|
General encryption, decryption function example using FILE
I/O and RC2 with an 80 bit key:  |
int do_crypt(FILE *in, FILE *out, int do_encrypt) { /* Allow enough space in output buffer for additional block */ inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH]; int inlen, outlen; /* Bogus key and IV: we'd normally set these from * another source. */ unsigned char key[] = "0123456789"; unsigned char iv[] = "12345678"; /* Don't set key or IV because we will modify the parameters */ EVP_CIPHER_CTX_init(&ctx); EVP_CipherInit_ex(&ctx, EVP_rc2(), NULL, NULL, NULL, do_encrypt); EVP_CIPHER_CTX_set_key_length(&ctx, 10); /* We finished modifying parameters so now we can set key and IV */ EVP_CipherInit_ex(&ctx, NULL, NULL, key, iv, do_encrypt); for(;;) { inlen = fread(inbuf, 1, 1024, in); if(inlen <= 0) break; if(!EVP_CipherUpdate(&ctx, outbuf, &outlen, inbuf, inlen)) { /* Error */ return 0; } fwrite(outbuf, 1, outlen, out); } if(!EVP_CipherFinal_ex(&ctx, outbuf, &outlen)) { /* Error */ return 0; } fwrite(outbuf, 1, outlen, out); EVP_CIPHER_CTX_cleanup(&ctx); return 1; }
|
HISTORYEVP_CIPHER_CTX_init(), EVP_EncryptInit_ex(), EVP_EncryptFinal_ex(),
EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(), EVP_CipherInit_ex(),
EVP_CipherFinal_ex() and EVP_CIPHER_CTX_set_padding() appeared in
OpenSSL 0.9.7.
|
|