NAME
d2i_X509, i2d_X509, d2i_X509_bio, d2i_X509_fp, i2d_X509_bio, i2d_X509_fp — X509 encode and decode functions
Synopsis
#include <openssl/x509.h>
X509
*d2i_X509(X509 **px, unsigned char **in, int len);
int
i2d_X509(X509 *x, unsigned char **out);
X509 *d2i_X509_bio(BIO
*bp, X509 **x);
X509 *d2i_X509_fp(FILE *fp, X509 **x);
int
i2d_X509_bio(X509 *x, BIO *bp);
int i2d_X509_fp(X509 *x,
FILE *fp);
DESCRIPTION
The X509 encode and decode routines encode and parse an X509 structure,
which represents an X509 certificate.
d2i_X509() attempts to decode len bytes
at *out. If successful a pointer to the X509 structure
is returned. If an error occurred then NULL is
returned. If px is not NULL then
the returned structure is written to *px. If *px is
not NULL then it is assumed that *px contains
a valid X509 structure and an attempt is made
to reuse it. If the call is successful *out is
incremented to the byte following the parsed data.
i2d_X509() encodes the structure pointed to by x into
DER format. If out is not NULL is
writes the DER encoded data to the buffer at *out,
and increments it to point after the data just written. If the return
value is negative an error occurred, otherwise it returns the length
of the encoded data.
For OpenSSL 0.9.7 and later if *out is NULL memory
will be allocated for a buffer and the encoded data written to it.
In this case *out is not incremented and it
points to the start of the data just written.
d2i_X509_bio() is similar to d2i_X509() except it attempts
to parse data from BIO bp.
d2i_X509_fp() is similar to d2i_X509() except it attempts
to parse data from FILE pointer fp.
i2d_X509_bio() is similar to i2d_X509() except it writes the
encoding of the structure x to BIO bp and
it returns 1 for success and 0 for failure.
i2d_X509_fp() is similar to i2d_X509() except it writes the
encoding of the structure x to BIO bp and
it returns 1 for success and 0 for failure.
NOTES
The letters i and d in
for example i2d_X509 stand for "internal" (that
is an internal C structure) and "DER". So that i2d_X509 converts
from internal to DER.
The functions can also understand BER forms.
The actual X509 structure passed to i2d_X509() must be a valid
populated X509 structure it can not simply
be fed with an empty structure such as that returned by X509_new().
The encoded data is in binary form and may contain embedded
zeroes. Therefore any FILE pointers or BIOs should be opened in
binary mode. Functions such as strlen() will not return
the correct length of the encoded structure.
The ways that *in and *out are
incremented after the operation can trap the unwary. See the WARNINGS section
for some common errors.
The reason for the auto increment behaviour is to reflect
a typical usage of ASN1 functions: after one structure is encoded
or decoded another will processed after it.
EXAMPLES
Allocate and encode the DER encoding of an X509 structure:
int len; unsigned char *buf, *p; len = i2d_X509(x, NULL); buf = OPENSSL_malloc(len); if (buf == NULL) /* error */ p = buf; i2d_X509(x, &p);
|
If you are using OpenSSL 0.9.7 or later then this can be simplified
to:
int len; unsigned char *buf; buf = NULL; len = i2d_X509(x, &buf); if (len < 0) /* error */
|
Attempt to decode a buffer:
X509 *x; unsigned char *buf, *p; int len; /* Something to setup buf and len */ p = buf; x = d2i_X509(NULL, &p, len); if (x == NULL) /* Some error */
|
Alternative technique:
X509 *x; unsigned char *buf, *p; int len; /* Something to setup buf and len */ p = buf; x = NULL; if(!d2i_X509(&x, &p, len)) /* Some error */
|
WARNINGS
The use of temporary variable is mandatory. A common mistake
is to attempt to use a buffer directly as follows:
int len; unsigned char *buf; len = i2d_X509(x, NULL); buf = OPENSSL_malloc(len); if (buf == NULL) /* error */ i2d_X509(x, &buf); /* Other stuff ... */ OPENSSL_free(buf);
|
This code will result in buf apparently
containing garbage because it was incremented after the call to
point after the data just written. Also buf will
no longer contain the pointer allocated by OPENSSL_malloc() and the
subsequent call to OPENSSL_free() may well
crash.
The auto allocation feature (setting buf to NULL) only works
on OpenSSL 0.9.7 and later. Attempts to use it on earlier versions
will typically cause a segmentation violation.
Another trap to avoid is misuse of the xp argument
to d2i_X509():
X509 *x; if (!d2i_X509(&x, &p, len)) /* Some error */
|
This will probably crash somewhere in d2i_X509().
The reason for this is that the variable x is
uninitialized and an attempt will be made to interpret its (invalid)
value as an X509 structure, typically causing
a segmentation violation. If x is set to NULL
first then this will not happen.
Restrictions
In some versions of OpenSSL the "reuse" behaviour of d2i_X509()
when *px is valid is broken and some parts of
the reused structure may persist if they are not present in the
new one. As a result the use of this "reuse" behaviour is strongly
discouraged.
i2d_X509() will not return an error in many versions of OpenSSL,
if mandatory fields are not initialized due to a programming error
then the encoded structure may contain invalid data or omit the
fields entirely and will not be parsed by d2i_X509(). This may be
fixed in future so code should not assume that i2d_X509() will always
succeed.
RETURN VALUES
d2i_X509(), d2i_X509_bio() and d2i_X509_fp() return a valid X509 structure
or NULL if an error occurs. The error code
that can be obtained by ERR_get_error(3).
i2d_X509(), i2d_X509_bio() and i2d_X509_fp() return a the
number of bytes successfully encoded or a negative value if an error
occurs. The error code can be obtained by ERR_get_error(3).
i2d_X509_bio() and i2d_X509_fp() returns 1 for success and
0 if an error occurs The error code can be obtained by ERR_get_error(3).
HISTORY
d2i_X509, i2d_X509, d2i_X509_bio, d2i_X509_fp, i2d_X509_bio
and i2d_X509_fp are available in all versions of SSLeay and OpenSSL.