
© Copyright 2010 Hewlett-Packard Development Company, L.P 1

OpenVMS Technical
Journal V14 OpenVMS – Paged Dynamic Memory Fragmentation

Causing Performance Problems
John Hockett, HP Services Technology Consultant

OpenVMS – Paged Dynamic Memory Fragmentation Causing Performance Problems 1
Introduction ... 2
Analysis .. 3
Solution .. 7
Acknowledgement .. 8

© Copyright 2010 Hewlett-Packard Development Company, L.P 2

Introduction

When customers added additional users to their environment, they started receiving complaints
related to response time performance problems. The number of complaints increased as the time since
the last reboot increased. After a reboot, the performance was acceptable for part of a normal
production day. The problems were seen only by users who were running a large custom application.
Typically, users running other applications and DCL commands did not see any performance
problems. The users were experiencing random pauses of 3 to 5 seconds, and often multiple
processes were seen in a MUTEX wait state for short intervals as shown in Figure 1.

$ SHOW SYSTEM
OpenVMS V7.3-2 on node L 26-OCT-2005 13:46:02.97
Pid Process Name State Pri I/O CPU Page flts Pages
:
2892F00C _TNA6942: MUTEX 6 58122 0 00:00:31.32 36814 814
2885C06C _TNA8017: MUTEX 6 491 0 00:00:03.33 592 714
2890C9D2 146811 MUTEX 6 87 0 00:00:00.83 123 112
288F7203 _TNA8023: MUTEX 5 81 0 00:00:01.96 125 116
2890BA06 _TNA8024: MUTEX 6 87 0 00:00:00.72 129 116
2890920F RA_127 MUTEX 3 0 0 00:00:00.00 20 30 S
288F6211 MS_66 MUTEX 6 15 0 00:00:00.00 123 134 S
2891BA13 MAINT_CAR MUTEX 6 0 0 00:00:00.00 20 30 S
2891AB04 _TNA7911: MUTEX 6 10016 0 00:00:10.04 7191 1412
28932E42 _TNA8009: MUTEX 6 32810 0 00:00:14.61 1231 763
:

Figure 1: SHOW SYSTEM

© Copyright 2010 Hewlett-Packard Development Company, L.P 3

Analysis

After reviewing the collected T4 data from node L, it was determined that each time an MWAIT spike
(Blue) occurred, there was also a similar Kernel Mode spike (Red) just before and throughout the
MWAIT spike.
Note: A process in a Mutex wait state is considered an MWAIT process. See Figure 2 below.

Figure 2: KERNEL mode and processes in MUTEX WAIT

© Copyright 2010 Hewlett-Packard Development Company, L.P 4

A process running in Kernel Mode owns a MUTEX causing the number of other processes waiting for
the same MUTEX to spike. Normally, the time spent in Kernel Mode holding a MUTEX is very short,
but there is evidence to show that some Kernel Mode operations are taking longer than expected,
and thus causing the other processes, waiting for the same MUTEX, to spike at times.

In the following example (Figure 3), process 288E3D5A ran continually from 10:11:54.174601 to
10:11:58.000763 with most PC samples in EXE$DEALLOCATE_C+0001C or
EXE$DEALLOCATE_C+00020, and an occasional LOGICAL_NAMES+00288. During this time, other
processes waiting for the same MUTEX are placed in a MUTEX wait state.

$ ANALYZE/SYSTEM
SDA> PCS LOAD
SDA> PCS START TRACE

wait 10 minutes
SDA> PCS STOP TRACE
SDA> SET OUTPUT PC.DAT
SDA> PCS SHOW TRACE
SDA> PCS UNLOAD
SDA> EXIT
$ EDIT PC.DAT
 :

Timestamp CPU PC IPL Pid Routine
Module
---------------------- --- -------- --- -------- ------------------------
-------- ------
31-OCT 10:11:54.000216 03 80124F74 3 00000000
SCH$CALC_CPU_LOAD_C+00464 PROCESS_MANAGEMENT+00000F74
 :
31-OCT 10:11:54.174601 03 8003FCFC 2 288E3D5A EXE$DEALLOCATE_C+0001C
SYSTEM_PRIMITIVES_MIN+00013CFC
 : 1866 total PC samples in this collection from the same PID
 that contained:

 EXE$DEALLOCATE_C 1808 samples
 LOGICAL_NAMES 58 samples

31-OCT 10:11:58.000763 03 8003FD10 2 288E3D5A EXE$DEALLOCATE_C+00030
SYSTEM_PRIMITIVES_MIN+00013D10
 :

Figure 3: System PC samples summarized

© Copyright 2010 Hewlett-Packard Development Company, L.P 5

The System Dump Analyzer (SDA) MTX tool is used to determine which MUTEX has the highest usage.
In Figure 4, the MUTEX with the highest usage is the LNM MUTEX (logical name MUTEX).

$ ANALYZE/SYSTEM
SDA> MTX LOAD
SDA> MTX START TRACE
SDA> MTX SHOW TRACE/SUMMARY

Mutex Trace Information:
--
 Read Read Lock Write Write Lock
 Locks Waits Locks Waits Wait Unlocks
Mutex /sec /sec /sec /sec % /sec
---------- ------ ------- ----- ------- ------ ------
LNM 1664.7 602.6 145.2 188.6 43.7% 1810.0
IODB 382.4 4.1 324.0 50.8 7.8% 706.4
CEB 0.0 0.0 13.6 0.0 0.0% 13.6
PGDYN 0.0 0.0 159.6 0.3 0.2% 159.5
GSD 0.0 0.0 52.4 2.2 4.2% 52.4
CIA 0.0 0.0 0.1 0.0 0.0% 0.1
ORB 0.0 0.0 0.0 0.0 0.0% 0.0
VOL 74.0 0.0 0.0 0.0 0.0% 74.0
OBJCLS 17.2 0.0 0.0 0.0 0.0% 17.2
RSDM 0.0 0.0 1.7 0.0 0.0% 1.7
??? 53.7 0.0 0.2 0.0 0.0% 53.9
 ------ ------- ----- ------ ------ ------
 2192.1 606.8 696.8 241.9 29.4% 2888.8
...
Mutex Rate/sec Operation Callers PC
Module Offset
---------- ---------- ---------------- -------------------------------------- -

LNM 2157.3 Lock Read 801FFFAC LOGICAL_NAMES+07FAC
LOGICAL_NAMES 00007FAC
LNM 289.9 Lock Write 801FD7BC LOGICAL_NAMES+057BC
LOGICAL_NAMES 000057BC
LNM 109.2 Lock Read 801F8FA8 LNM$SEARCH_ONE_C+00068
LOGICAL_NAMES 00000FA8
LNM 23.4 Lock Write 801F9314 LNM$LOCKW_C+00024
LOGICAL_NAMES 00001314
LNM 20.6 Lock Write 801FF284 LOGICAL_NAMES+07284
LOGICAL_NAMES 00007284

IODB 144.5 Lock Read 800F5EF8 IO_ROUTINES+23EF8
IO_ROUTINES 00023EF8
IODB 127.1 Lock Read 800F6920 EXE$DVI_FREEBLOCKS_C+00650
IO_ROUTINES 00024920
IODB 126.3 Lock Write 800ED164 IO_ROUTINES+1B164
IO_ROUTINES 0001B164
IODB 125.7 Lock Write 800EAEC8 IOC_STD$CREATE_UCB_C+00F68
IO_ROUTINES 00018EC8
IODB 111.4 Lock Read 800F5E68 IO_ROUTINES+23E68
IO_ROUTINES 00023E68

CEB 13.6 Lock Write 80156B34 EXE_STD$CHKWAIT2_C+00DF4
PROCESS_MANAGEMENT 00032B34

PGDYN 109.6 Lock Write 8003F604 EXE$ALOPAGED_C+00074
SYSTEM_PRIMITIVES_MIN 00013604
PGDYN 50.3 Lock Write 8003FB54 EXE$DEAPAGED_C+00094
SYSTEM_PRIMITIVES_MIN 00013B54

Figure 4: MUTEX usage

© Copyright 2010 Hewlett-Packard Development Company, L.P 6

After observing the system following a reboot, it was evident that the Paged Dynamic Memory
(PAGEDYN) free list fragmentation increased the longer the system was up. As the fragmentation
increased, the Kernel Mode time and the number of processes in MUTEX wait state increased. Once
the PAGEDYN freelist exceeded 10,000 free blocks, the pauses started becoming noticeable to the
users.

The high LNM MUTEX utilization was presented to the customer and they were able to identify that
their applications used the Job Logical Name Tables quite extensively. Working with the customer, we
determined that their production applications frequently execute thousands of Logical Name creations
and deletions in the Job Logical Name Table. The data structures that support the Job Logical Name
Tables (LNMx) are allocated from PAGEDYN.

PAGEDYN has always been organized as a singly linked list.
Each time new LNMx structures are to be allocated from PAGEDYN, the LOGICAL_ NAMES code
acquires the LNM MUTEX and also requests the memory allocation code to traverse the PAGEDYN
linked list, one data structure at a time until the proper sized LNMx structure can be allocated from
PAGEDYN. The LOGICAL_ NAMES code then adds the LNMx to an existing Job Logical Name Table
or creates a new Job Logical Name Table.

When a LNMx is to be returned, the LOGICAL_NAMES code must also acquire the LNM MUTEX and
remove the LNMx structure from the Job Logical Name Table and call the memory deallocation code
to traverse the PAGEDYN linked list one data structure at a time until the proper place is determined
to insert the returned LNMx structure.

If PAGEDYN has become fragmented into several pieces, this can cause users to experience
performance problems while the singly linked list is being traversed. During the time that it takes to
allocate or return a LNMx, other processes that want to allocate or delete logical names or logical
name tables go into a MUTEX wait state.

After reviewing the customer's system, it was determined that PAGEDYN was very fragmented. In the
example shown in Figure 5, there are 34,826 fragments. Most of the fragments are less than 64
decimal bytes in length:

Figure 5: SHOW MEMORY output

Therefore, a potential allocation or deallocation of an LNMx (or some other packet from PAGEDYN)
could require, in a worst case scenario, "walking” a list of 34,000 packets before the allocation or
deallocation request could be completed.

$ SHOW MEMORY/POOL/FULL
 :
Paged Dynamic Memory
Current Size (MB) 143.04 Current Size (Pagelets) 292960
Free Space (MB) 84.24 Space in Use (MB) 58.79
Largest Var Block (MB) 81.30 Smallest Var Block (bytes) 16.00
Number of Free Blocks 34826 Free Blocks LEQU 64 bytes 33533

© Copyright 2010 Hewlett-Packard Development Company, L.P 7

Solution

To eliminate the performance problem, OpenVMS engineering designed and provided new versions
of SYSTEM_PRIMITIVES*.EXE,*.STB

This new code implements PAGEDYN lookaside lists similar to the lookaside lists that have been
implemented in Nonpaged Dynamic Memory for years. This new code is implemented in the
MEMORYALC routine of the SYSTEM_PRIMITIVES image. The MEMORYALC routine does the actual
allocation and deallocation of Paged Dynamic Pool from the new lookaside lists.

Like non-paged pool, the PAGEDYN lookaside lists start out empty. As packets are deallocated, the
size is checked and the packet is returned to the appropriate list. If the packet is larger than
RSVD_EXEC_1 (prior to VMS 8.4) or PAGED_LAL_SIZE (VMS 8.4 and later), the packet is returned to
the variable paged pool. When an attempt is made to allocate a packet less than or equal to
RSVD_EXEC_1 or PAGED_LAL_SIZE, the appropriate PAGEDYN lookaside list containing packets of
that size is checked. If a packet is found, it is removed and returned to the caller without having to
acquire the PGDYN MUTEX. If a packet is not found, the PGDYN MUTEX will be acquired and the
packet will be allocated from the variable free list as had been traditionally done.

When RSVD_EXEC_1 or PAGED_LAL_SIZE is non-zero, PAGEDYN lookaside lists are enabled and
the maximum packet size to use on the paged pool lookaside list is established. It can range between
1 - 2560 decimal bytes (the packets themselves have 16 byte granularity, 16, 32, 48, 64, etc). For
most systems, setting RSVD_EXEC_1 or PAGED_LAL_SIZE to 512 bytes is more than adequate. The
most utilized PAGEDYN lookaside lists are 80 to 208 bytes. Also, as part of further performance
enhancements, the PGDYN MUTEX is not used if a packet is found on or returned to one of the
PAGEDYN lookaside lists.

If the requested PAGEDYN lookaside lists is empty or the packet request is larger than the SYSGEN
parameter setting, the PGDYN MUTEX is acquired and memory is allocated from the PAGEDYN
singly linked variable size free list as it was done in past implementations.

If there is a PAGEDYN shortage, the new code will reclaim memory from the PAGEDYN lookaside
lists and return it to the singly linked variable size freelist.
This new code can be enabled in SYSTEM_PRIMITIVES images dated after 14-NOV-2008 by setting
the SYSGEN parameter RSVD_EXEC_1 to a nonzero value. When RSVD_EXEC_1 is 0, the default
value, this feature is disabled. When RSVD_EXEC_1 is nonzero (1 - 2650), it establishes the size of
the largest paged pool lookaside list to use. For example, setting RSVD_EXEC_1 to 512 would create
multiple lookaside lists for packets sized up to 512 decimal bytes and should be adequate for most
systems.

Remedial kits for VMS 7.3-2, V8.2, V8.2-1, V8.3, and V8.3-1H1 containing a
SYSTEM_PRIMITIVES.EXE dated on or after 14-NOV-2008 will contain this new functionality.
The following remedial kits or a later version of these kits contain this new functionally:

• VMS831H1I_SYS-V0400
• VMS83I_SYS-V0900
• VMS821I_SYS-V0900
• VMS83A_SYS-V1100
• VMS82A_SYS-V1200
• VMS732_SYS-V1800

© Copyright 2010 Hewlett-Packard Development Company, L.P 8

The Paged Dynamic Lookaside Lists are expected to be fully implemented with the 8.4 release of
OpenVMS. It will be enabled by setting the SYSGEN parameter PAGED_LAL_SIZE to a nonzero
value. The default PAGED_LAL_SIZE setting of zero sets the default behavior as it has been for
decades, a singly linked variable size free list.

For more information, refer to the release notes for each of the above mentioned kits. The kits are
available at the following websites:
http://www.itrc.hp.com or ftp://ftp.itrc.hp.com/

Acknowledgement

Thanks to Mark Morris for the design, implementation, and description of the changes to the
SYSTEM_PRIMITIVES images. Thanks to Kevin Jenkins, Tom Cafarella, and Jean Pierre Corre for their
assistance with the initial problem definition. Finally, thanks to Mark Morris, Rob Eulenstein, Ted Saul,
and John Fisher for their review of this article.

http://www.itrc.hp.com/�
ftp://ftp.itrc.hp.com/�

	OpenVMS – Paged Dynamic Memory Fragmentation Causing Performance Problems
	Introduction
	Analysis
	Solution
	Acknowledgement

