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Overview 
 
When OpenVMS code detects an internal inconsistency, such as a corrupted data structure or an 
unexpected exception, it generates a bugcheck. If the inconsistency is not severe enough to prevent 
continued system operation, the bugcheck generated is nonfatal and merely results in an error log 
entry. 
 
If the error is serious enough to jeopardize system operation and data integrity, OpenVMS code 
generates a fatal bugcheck. This generally results in aborting normal system operation, recording the 
contents of memory to a dump file for later analysis, and rebooting the system. 
 
This article describes how fatal bugchecks are handled on OpenVMS Alpha and OpenVMS I64, how 
the dump file is found, how memory is written to the dump file, and how the dump file is organized. 
 
Initial Bugcheck Handling 
 
On Alpha, a bugcheck is generated by placing a bugcheck value in R16 and executing  a 
CALL_PAL BUGCHK instruction. On I64 a bugcheck is generated by placing a value in R17 and 
executing a BREAK BREAK$C_SYS_BUGCHECK instruction. This article refers to these simply as the 
BUGCHECK instruction. In both cases, the bugcheck value identifies the type and severity of the 
bugcheck and determines whether a crash should be followed by a cold or warm reboot.  If the 
bugcheck is fatal, bit 2 of the value is 1; otherwise it is 0. If the bugcheck is fatal and a cold reboot is 
requested, bit 0 of the value is 1; otherwise, it is 0. Bit 1 is not used and is always 0. 
 
Regardless of the type of bugcheck, executing the instruction causes an exception. The BUGCHECK 
instruction results in changing access mode to kernel mode and passing control to code that services 
the exception. In this article, this service routine and the routines it calls are referred to as BUGCHECK 
code. 
 
OpenVMS BUGCHECK code is implemented in several parts. Initially, the exception is dispatched to 
platform-specific code. On I64 platforms, BUGCHECK code flushes all stacked registers to their 
memory backing store. On both platforms, BUGCHECK code ensures that interrupt priority level (IPL) 
is at least 3. This prevents rescheduling and resumption on a different CPU.  
 
BUGCHECK code tests whether this is a recursive bugcheck, that is, whether it has already saved 
bugcheck context in a nonpaged pool per-CPU structure called the per-CPU database. If so, it refrains 
from overwriting the description of the original bugcheck. If this is not a recursive bugcheck, 
BUGCHECK code records information such as the following in the per-CPU database: 
 

• Access mode stack pointers and, on I64 platforms, access mode register stack pointers  
• Page table base registers 
• Address space numbers 
• AST summary and enable information 
• Software interrupt summary information 
• Process unique value, which identifies a user thread 
• Processor status at bugcheck, including IPL and access mode 
• Number identifying the specific bugcheck 
• Process and system cycle counters 
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• Address of the stack structure describing the BUGCHECK exception: on Alpha, the exception 
stack frame, or, on I64, the INTSTK structure built by software interrupt services (SWIS) code 

 
BUGCHECK code decides whether subsequent processing can occur in the current hardware context 
or whether it needs to switch contexts. If this is an outer mode bugcheck (user or supervisor), no switch 
is necessary. If this is an inner mode fatal bugcheck, BUGCHECK code switches to its own context, 
which has a larger kernel mode stack. 

  
On Alpha platforms, BUGCHECK code saves on the current stack the integer registers not already 
saved in the exception frame. If the process is performing floating-point calculations, it saves all the 
floating-point registers on the stack. On certain Alpha platforms, it also triggers the on-chip logic 
analyzer to dump any program counter (PC) data and to stop logging more.  
 
On I64 platforms, the general registers, branch registers, predicate registers, application registers, 
and minimal floating point registers (F6 through F11) have already been saved in the INTSTK 
structure.  BUGCHECK code saves the rest of the low bank of floating point registers (F0 through F31) 
and, if the process is using the high bank, saves F32 through F127.  
 
BUGCHECK code’s subsequent actions vary, depending on the access mode in which the bugcheck 
occurred and the severity of the bugcheck. The following sections describe the BUGCHECK code 
actions. 
 
Bugchecks from User and Supervisor Modes 
 
The OpenVMS operating system itself generates few bugchecks from user or supervisor mode. It 
provides the mechanism for use by other software. When a bugcheck is generated from user or 
supervisor mode code running in a process with BUGCHK privilege, BUGCHECK code writes an 
error log message. 
 
The SYSGEN parameter BUGCHECKFATAL has no effect on bugchecks generated from user or 
supervisor mode. Only bit 2 of the bugcheck value determines whether a given bugcheck is fatal. 
Fatal user and supervisor mode bugchecks affect only the current process. 
 
If the bugcheck is fatal, BUGCHECK code returns to the access mode of the bugcheck and requests 
the Exit ($EXIT) system service. It specifies the value SS$_BUGCHECK as the final image status. What 
happens as a result of this service request depends on whether the process is executing a single 
image (without a command language interpreter, CLI, to establish a supervisor mode exit handler) or 
is an interactive or batch job. 
 

• If the process is executing a single image, a fatal bugcheck from user or supervisor mode 
typically results in process deletion. 

 
• If the process has a CLI, a fatal bugcheck generated from an interactive or batch job typically 

causes the currently executing image to exit and control to be passed to the CLI through its 
supervisor mode exit handler. The CLI prompts for the next command. 

 
In either case, the only difference between fatal user and supervisor mode bugchecks is that user 
mode exit handlers are not called when a fatal bugcheck is generated from supervisor mode. 
 
If the bugcheck is not fatal, BUGCHECK code restarts Alpha on-chip logic analyzer data collection (if 
it was active), restores saved registers, and dismisses the exception. Execution continues with the 
instruction following the BUGCHECK instruction. 
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Bugchecks from Executive and Kernel Modes 
 
Various OpenVMS components generate bugchecks from executive and kernel modes. If an executive 
or kernel mode bugcheck value is not fatal and the SYSGEN parameters BUGCHECKFATAL and 
SYSTEM_CHECK are both zero, BUGCHECK code proceeds as it does for nonfatal bugchecks for the 
outer two access modes. It writes an error log message, restores the saved registers, and dismisses the 
exception, passing control back to the instruction following the BUGCHECK instruction.  
 
Typically, execution continues with no further effects. However, the routine that detected the error and 
generated the bugcheck can take further action. One example of such a routine is the last chance 
handler for executive mode exceptions. It generates the nonfatal bugcheck SSRVEXCEPT (unexpected 
system service exception). On the presumption that process data structures are inconsistent, it then 
requests the $EXIT system service. Exiting from executive mode results in process deletion. Another 
example is the Record Management Services (RMS) routine that generates the nonfatal bugcheck 
RMSBUG. On the presumption that process RMS data structures are inconsistent, it deletes the process 
by requesting the Delete Process ($DELPRC) system service. 
 
If BUGCHECKFATAL is 1 or SYSTEM_CHECK is nonzero, any executive or kernel mode bugcheck is 
treated as fatal, independent of bit 2 of the bugcheck value. By default, BUGCHECKFATAL and 
SYSTEM_CHECK are 0, which means that a nonfatal inner access mode bugcheck does not cause the 
system to crash. BUGCHECK performs fatal bugcheck processing under any of the following 
circumstances: 
 

• BUGCHECKFATAL = 1 
• SYSTEM_CHECK ≠ 0 
• The bugcheck is fatal.  

 
In the case of a fatal bugcheck, the most important function of BUGCHECK code is to record the 
contents of memory and of the error log buffers. BUGCHECK code does not use standard I/O 
mechanisms to write this data because they may be affected by the system inconsistency that 
triggered the fatal bugcheck. Instead, it performs I/O through the bootstrap system device driver, the 
one used during system initialization. After recording memory contents, BUGCHECK halts the system 
to prevent any further system operations in case they might lead to data corruption. 
 
After the system reboots, during system initialization, the error log buffers are copied to nonpaged 
pool for processing by the ERRFMT process. The dump file can be examined with the System Dump 
Analyzer (SDA) to determine the cause of the crash. 
 
 
Fatal Bugcheck Processing on a Uniprocessor System  
 
In processing a fatal bugcheck, BUGCHECK code takes the following steps: 
 
1. On an I64 system, BUGCHECK turns off SWIS tracing and disables virtual hash page table 

walking (a hardware mechanism to improve performance of handling translation buffer misses).  
On an Alpha system, BUGCHECK  turns off performance monitoring. On both platform types, 
BUGCHECK raises IPL to 31 to disable all interrupts. 
 

2. BUGCHECK tests whether there have been four or more recursive bugchecks. If so, it displays on 
the console an error message, information about the most recent exception, and the stack. It then 
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reboots or shuts the system down, depending on the value of SYSGEN parameter BUGREBOOT. 
 

3. If all of the following conditions are met, BUGCHECK displays on the console the location of 
crash-related information and enters XDELTA: 

 
• There have been no recursive bugchecks. 
• BUGREBOOT is zero.  
• The bugcheck has not been triggered by shutting the system down or running OPCCRASH. 
• The system has been booted with XDELTA or the remote debugger.  

 
Entering XDELTA enables a human operator to examine the state of the operating system through 
XDELTA commands and request a crash dump at will. 
 

4. Based on the value of the BUGREBOOT parameter and bit 0 of the bugcheck value, BUGCHECK 
selects one of the following halt action values: perform a cold bootstrap, perform a warm 
bootstrap, or remain halted. It stores the value in the hardware restart parameter block (HWRPB) 
per-CPU slot. 
 

5. If this system is a Galaxy node, BUGCHECK notifies other sharing set members that this node is 
going down unless there have been three or more recursive bugchecks. This test allows for the 
possibility that attempting to notify the other members caused some of the bugchecks. 
 

6. BUGCHECK shuts down any system communication services (SCS) circuits unless there have been 
three or more recursive bugchecks. This test allows for the possibility that attempting to shut down 
SCS circuits caused some of the bugchecks.  
 

7. BUGCHECK shuts down all adapters and initializes the adapter that connects the system device 
circuits unless there have been three or more recursive bugchecks. This test allows for the 
possibility that attempting to shut down adapters caused some of the bugchecks.  
 

8. BUGCHECK stores the value of the bugcheck code in the per-CPU database.  
 

9. If there have been no recursive bugchecks, BUGCHECK begins to write information about the 
bugcheck to the console terminal: it announces that the system is crashing. If this is the second 
nested bugcheck, BUGCHECK writes a message saying that this is a recursive bugcheck and 
displays information about the most recent exception. 
 

10. BUGCHECK validates the checksum of the boot control block, the data structure containing the 
locations of the error log and dump files. If the checksum is bad, no dump can be written.  
 

11. If the checksum is good and the system disk is shadowed, BUGCHECK determines the unit 
number of the master disk in the shadow set. If bit 2 in DUMPSTYLE is set, BUGCHECK also 
selects the first valid dump device from the DUMP_DEV environment variable, as described later 
in this article.  
 

12. BUGCHECK writes information about the bugcheck to the console terminal. This information can 
include the bugcheck message, addresses of loaded executive images, current process name, 
current image name, privileges of the current security persona, contents of registers, and contents 
of stacks relevant to the crash.   
 
How much information is written depends on the value of bit 1 in SYSGEN parameter 
DUMPSTYLE. The default value of 0 inhibits most output. The console output is written before the 
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dump file and should not be interrupted by halting the processor from the console terminal. Such 
an interruption prevents the dump file from being written. 
 

13. BUGCHECK writes the dump header, trap information blocks, the bugcheck error log entry, and 
the error log buffers to SYS$SPECIFIC:[SYSEXE]SYS$ERRLOG.DMP. For simplicity, the layout 
within SYS$ERRLOG.DMP matches the layout within the dump file. After writing the error log 
buffers, BUGCHECK rewrites the dump header to indicate that the error log buffers have been 
written.  

 
If the system disk is a member of a shadow set, BUGCHECK writes the same set of information to 
every member of the shadow set. This ensures that regardless of which member is master when 
the system reboots, system initialization code can process the error log buffers from the system 
disk before the complete shadow set is mounted and made consistent.  
 

14. BUGCHECK determines whether a dump is to be written and, if so, what kind of dump, based on 
the following criteria: 

 
• If the SYSGEN parameter DUMPBUG is 0, no dump is written. Its default value is 1. 

 
• If neither SYS$SPECIFIC:[SYSEXE]SYSDUMP.DMP nor PAGEFILE.SYS exists on the system disk 

or a disk specified by the DUMP_DEV environmental parameter, no dump is written.  
 

• If, during system initialization, resources cannot be allocated for BUGCHECK's use, no dump 
can be written. BUGCHECK initialization code attempts to allocate system page table entries 
to map I/O requests, its memory stack, and, on an I64 platform, its register stack.  It needs 
additional page table entries if the dump is to be compressed. 

 
• If this is an operator-requested shutdown generated through the system shutdown command 

procedure, no dump is written.  
 

• If bit 0 in DUMPSTYLE is set, memory is dumped selectively; otherwise, a physical memory 
dump (also known as a full dump) is written. The default value of this parameter specifies a 
selective dump. 

 
• If bit 3 in DUMPSTYLE is set, the memory contents in the dump will be compressed. 

BUGCHECK needs physical memory to serve as compression buffers. It borrows memory from 
the resident code granularity section after copying the pages’ current contents to a temporary 
location in the dump file.  If insufficient pages are available, an uncompressed dump is 
written. The default value of this parameter specifies a compressed dump. 

 
15.  If no dump is to be written, BUGCHECK continues with step 23. 

 
16. If any type of dump is to be written, BUGCHECK switches, if necessary, to the disk containing the 

dump file. This could be needed if BUGCHECK had been writing to shadow set members’ 
SYS$ERRLOG.DMP or if it is writing a “dump off system disk” (DOSD). It then writes the dump 
header, trap information blocks, bugcheck error log entry, and the error log buffers to the dump 
file. Then it rewrites the dump header with a status indicating that the dump contains the error log 
allocation buffers. 
 

17. If the system disk is shadowed, BUGCHECK outputs a message to the console terminal indicating 
which member it is dumping to and whether that member is the master unit. 
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18. BUGCHECK outputs a message saying that it is starting to dump memory and specifying whether 
the dump is physical or selective and whether it is compressed. 
 

19. If the dump is compressed, BUGCHECK zeroes the blocks in the dump that will contain the 
compression map. 
 

20. If the dump is physical, BUGCHECK writes a map of memory to the dump file so that SDA can 
associate blocks of the file with physical pages. (Memory is likely to be discontiguous and may 
not start at page 0.) It then writes physical memory to the dump file, starting with the lowest page 
and, if requested, compressing as it goes. A later section in this article describes in detail the 
layout of a physical memory dump and the compression algorithm.  
 

21. If the dump is selective, BUGCHECK writes selected virtual address spaces to the dump, 
compressing as it goes if compression was requested. Each selected virtual address space is 
represented by a logical memory block (LMB).  

 
Not all virtual addresses in the range spanned by an LMB are necessarily included in it.  Because 
a virtual page not in memory cannot be written to the dump file, it represents a hole in the virtual 
address space. An LMB with holes in its address space contains a hole table, which lists the 
pages of address space not present in the dump.  

 
The general sequence in writing an LMB is as follows: 

 
a. BUGCHECK writes an LMB header in the next block of the dump. 

 
b. BUGCHECK scans the page tables that describe the address space to be dumped, looking 

for invalid pages that are not transition pages. It writes an entry in a hole table for each such 
sequence of pages found. It writes the hole table to the next block (or blocks) of the dump. It 
rewrites the LMB header and the dump header to reflect the presence of the hole table in the 
dump. 

 
c. BUGCHECK scans the hole table, filling in its allocated system page table entries with 

information from each valid or transition page table entry that it found. That is, it double-maps 
those pages so that it can write virtually noncontiguous pages in one I/O request. 

 
d. When BUGCHECK has written all the valid and transition pages in a particular LMB to the 

dump file, it rewrites the block containing the LMB header with correct information about the 
number of holes in the address space and the number of data blocks (valid and transition 
pages) in the LMB. 

 
e. It rewrites the dump header to increase the chances that the dump can be analyzed even if 

the dump is incomplete. 
 
If BUGCHECK reaches the end of a file sized for selective dumps before it reaches the end of the 
LMB list, it rewrites the descriptor of the current LMB with the hole count and actual number of 
data blocks written. It then rewrites the dump header, filling in status information such as the 
number of I/O errors encountered while writing the dump file, the number of process LMBs 
written, and so on. 

 
In writing a selective dump, BUGCHECK must defend against the possibility that whatever error 
led to the bugcheck might also have corrupted the data structures necessary to write virtual 
address space. BUGCHECK replaces the page fault and access violation exception service 
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routines with its own routines to prevent recursive bugchecks if either of those errors occurs. It also 
performs consistency checks on certain key data structures. For example, it checks whether an 
address presumed to be that of a process header is syntactically correct; that is, the address must 
be within known address boundaries and at an integral number of process headers from the 
beginning of the address range. 

 
22. If a dump was written, BUGCHECK rewrites the dump header so that information such as the 

error count and number of blocks of memory in the dump reflects what was actually written to the 
dump file.  

 
23. If SYSGEN parameter BUGREBOOT is 0, BUGCHECK writes a message on the console terminal. 

As a last step, it halts the system.  In response, the console subsystem gains control and acts on 
the halt action value stored in the per-CPU slot of the hardware restart parameter block (HWRPB) 
during step 4. Typically, BUGCHECK performs a warm bootstrap. 

 
Fatal Bugcheck Processing on a Symmetric Multiprocessing (SMP) System  
 
When one CPU member of an SMP system incurs a fatal bugcheck, all members crash; the executive 
takes the conservative approach that an inconsistency severe enough for operations on one CPU to 
cease is likely to be systemwide. All members of the active set participate in fatal bugcheck 
processing. 
 
The CPU that first incurs a fatal bugcheck (known as the CRASH CPU) drives the crash. It informs the 
other active CPUs that a bugcheck sequence has been initiated and takes a number of steps to ensure 
that a consistent system state can be saved. In response, the other active CPUs crash with the fatal 
bugcheck CPUEXIT. The primary CPU performs most of the remaining fatal bugcheck processing. 
 
The following figure shows the sequence of some of the steps in fatal bugcheck processing as they 
might occur concurrently on the CRASH CPU (which is not pictured as the primary processor), the 
primary processor, and the other active set members. Steps shown in different columns but on the 
same line do not necessarily execute at the same time on all CPUs. The numbers in the figure 
correspond to the steps described after the figure, not all of which are represented in the figure.  
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Figure 1  Steps in Fatal Bugcheck Processing on an SMP System 

 

The following steps, which correlate to numbers in the figure, focus on SMP-specific processing and 
omit most steps common to uniprocessor processing.  

 
1. BUGCHECK initially runs on the CRASH CPU and subsequently on the other SMP members. It 

records information in the per-CPU database. 
 

2. The primary processor switches to BUGCHECK’s hardware context; the secondary processors 
switch to the system hardware context.  

 
3. BUGCHECK saves registers in the per-CPU database. 
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4. BUGCHECK tests whether it is running on a member of the active set. If not (a pathological and 
unlikely case), it proceeds to step 9 rather than taking any steps that might interfere with SMP 
operations. 

 
5. If BUGCHECK is running on a member of the active set, it tests and sets the bit 

SMP$V_CRASH_CPU in SMP$GL_FLAGS. Only the first CPU to crash sets this bit and thus 
becomes the CRASH CPU. 

 
If the bit is already set, BUGCHECK continues with step 9. Use of the bit prevents confusion 
during concurrent independent crashes. 

 
6. BUGCHECK records the ID of the CPU on which it is running in SMP$GL_BUGCHKCP as the 

CRASH CPU. 
 

7. BUGCHECK acquires the CPU mutex to prevent any other processors from joining the active set. 
 

8. BUGCHECK requests an interprocessor interrupt of every other member of the active set, 
specifying bugcheck as the work request type.  The interprocessor interrupt service routine (ISR) 
generates the fatal bugcheck CPUEXIT.  

 
9. BUGCHECK then sets its CPU ID bit in SMP$GL_BUG_DONE to indicate that it has saved its 

context. 
 

10. BUGCHECK compares its CPU ID to that in SMP$GL_PRIMID to determine whether it is executing 
on the primary processor. If it is not, it halts. If it is in the failover set in a Galaxy system, it will be 
reassigned to another partition. 
  

11. This and the following steps execute only on the primary processor because it is the only member 
guaranteed access to the console terminal. 

 
BUGCHECK sets its CPU ID in SMP$GL_OVERRIDE, adding itself to the override set. As a 
member of the override set, its spinlock acquisitions and releases are not subject to the usual 
checks. 

 
12. BUGCHECK turns off the sanity timer to prevent sanity timer timeouts during the bugcheck. 

 
13. On a Galaxy system, BUGCHECK reassigns any CPUs that were already stopped at the time of 

the bugcheck. 
  

14. BUGCHECK waits up to a maximum of 10 seconds plus the value of SYSGEN parameter 
SMP_SPINWAIT (whose default value is 10 seconds) for all active members to save their context. 
Under normal circumstances, much of this wait does not occur. However, if one member restarts 
following a halt, it can take the member a significant time to complete that process and respond 
to the interprocessor interrupt requesting bugcheck processing. If 10 seconds passes before all 
members are done, BUGCHECK proceeds. 

 
15. On a Galaxy system, BUGCHECK reassigns previously active secondary CPUs that have already 

saved their context. 
 

16. BUGCHECK again waits, up to a maximum of 10 seconds plus SMP_SPINWAIT, for all active 
members to save their context. This wait ensures that the CRASH CPU has saved its context.   
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17. Still running on the primary CPU, BUGCHECK tests whether the CRASH CPU has saved its 
register context. If not, it uses its own per-CPU database in the following steps.  

 
18. BUGCHECK uses the bugcheck code in the CRASH CPU's per-CPU database to select the 

bugcheck message text. This field is initialized to BUG$_CPUCEASED in case a problem on the 
CRASH CPU prevents it from recording the real  bugcheck code. 

 
19. BUGCHECK writes bugcheck information from the CRASH CPU's per-CPU database to the 

console terminal. 
 

20. Running on the primary CPU, BUGCHECK then continues execution at step 13 in the earlier 
section titled “Fatal Bugcheck Processing on a Uniprocessor System”.  

 
The System Dump File 
 
System initialization code locates and opens the error log dump file 
SYS$SPECIFIC:[SYSEXE]SYS$ERRLOG.DMP and the system dump file 
SYS$SPECIFIC:[SYSEXE]SYSDUMP.DMP. If the error log dump file is not found, the error log buffers 
are not dumped when the system crashes or shuts down, and therefore cannot be recovered by 
system initialization code during the subsequent reboot. 
 
Absence of a system dump file on the system disk does not necessarily mean a system dump cannot 
be written. If SYS$SPECIFIC:[SYSEXE]PAGEFILE.SYS exists, the executive writes the system dump there 
instead. Subsequent analysis of a dump written to the page file requires that the SYSGEN parameter 
SAVEDUMP be 1. 
 
If the “dump off system disk” (DOSD) bit of the SYSGEN parameter DUMPSTYLE is set, BUGCHECK 
locates and opens SYSDUMP.DMP on an alternate disk. If such a dump file is found, it is used instead 
of a file on the system disk (SYSDUMP.DMP or PAGEFILE.SYS). If such a file is not found, the system 
disk dump file is used. If no dump file is found on either  disk, then no dump is written. DOSD is 
discussed in more detail at the end of this article. 
 
There are two types of dump:  
 

• A full or physical dump is a dump of physical memory from the lowest numbered physical 
page to the highest. 

 
• A selective dump is a dump of the virtual memory in use at the time of the system crash. 

 
Both physical and selective dumps are divided into several sections, as shown in the following figure 
and descriptive text.  
 



Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop 
 

© Copyright 2005 Hewlett-Packard Development Company, L.P. 12 
 

 

Dump Header 
 

Trap Information 

 

Crash Error Log Entry 

 

Error Log 

Buffers 

 

Compression 

Map 

 
Figure 2 Layout of Physical and Selective Dumps 

 
• Dump Header. This consists of two blocks of information describing the dump, including data 

such as the date and time of the system crash, the bugcheck type, the size of the dump, and so 
on. 

 
• Trap Information. In case the BUGCHECK code itself incurs a trap such as an ACCVIO while it is 

writing the dump, blocks are set aside for the data from the trap to be saved. The saved data 
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• Crash Error Log Entry. This is the error log entry that describes the system crash. Two blocks are 
used on both Alpha and I64. 

 
• Error Log Buffers. These are the error log entries that were recorded during the period 

immediately preceding the system crash and have not yet been written to the error log file 
ERRLOG.SYS. The number of blocks required for these buffers is calculated by multiplying the 
SYSGEN parameters ERRORLOGBUFF_S2 and ERLBUFFERPAG_S2. (When the system reboots 
after a crash, SYSINIT copies the Error Log Buffers and the Crash Error Log Entry into nonpaged 
pool. Later, the ERRFMT process records them in ERRLOG.SYS). 

 
• Compression Map. If a compressed dump is being written, space is allocated in the dump for the 

compression map. The format of this map is discussed later in this article. The BUGCHECK code 
calculates the worst-case size for the map – the number of blocks that would be needed if no 
compression were possible and if the dump file were completely filled. 

 
• Memory Contents. The actual contents of memory is dumped next. The layout of this section 

depends on the type of dump (physical or selective) being written. The two layouts are described 
in more detail later in this article. 

 
• File and Unwind Data. Starting in the OpenVMS release that follows Version 8.2, additional data 

is appended to the dump after the system reboots. This data is appended when the dump is 
copied by SDA during system startup. The appended data comprises:  

 
• Data to translate file identification numbers (FIDs) to file names 
• Unwind tables for images activated by any processes (OpenVMS I64 only) 

 
       The file and unwind data section is described in more detail later in this article. 
 
Physical Dumps 
 
In a physical dump, all the memory in the system is written to the dump file, with two exceptions: 
 

• If the SYSGEN parameter PHYSICAL_MEMORY has been set to less than the size of the 
system’s memory, any ranges of pages marked “Available” are not dumped. 

 
• In the case of a system crash following a MACHINECHECK due to a double-bit error in 

memory, the page with the error is not dumped. 
 
In a physical dump, memory is handled in fragments. A fragment is a contiguous range of pages 
with common attributes (for example, console-owned, OpenVMS-owned, or Galaxy shared memory). 
In an OpenVMS Galaxy system, usually the only fragments dumped are those owned by the member 
that has crashed, plus shared memory. The one exception to this is the page range containing the 
Galaxy Configuration Tree (GCT). The GCT, which needs to be included in the dump, is normally 
located in the local memory of member zero. If a system crash occurs in another member, an 
additional fragment must be created by BUGCHECK code to describe the page range of the GCT. 
 
The memory portion of a physical dump begins with the memory map. The memory map  
describes the memory fragments (physically contiguous ranges of pages) in the system. Up to 16 
memory fragments are described by each block of the memory map. The remainder of the dump has 
the following contents, in this order: 
 

• A memory fragment for the GCT (if BUGCHECK code created such a fragment) 
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• All console-owned pages 
• All OpenVMS-owned pages 
• Any Galaxy shared memory pages 

 
Console-owned pages are written before OpenVMS-owned pages to ensure that the level 1 page 
table page created by the console is written early. On many Alpha platforms, this page table is in a 
high-numbered page, and if pages were written in ascending order, the page would often fail to be 
written if the dump file was even slightly too small. 
 
An uncompressed or raw physical dump requires a dump file large enough for all of memory, 
plus space for the headers, error log buffers, memory map, and so on. If the dump file is too small, it 
is quite likely that no analysis will be possible. A compressed physical dump requires a dump file 
about half this size, but the exact size depends on the contents of memory. The memory map is not 
compressed. Dump compression is described later in this article.   
 
Selective Dumps 
 
In a selective dump, only memory in use at the time of the system crash is written to the dump file, and 
it is ordered by its virtual memory address. System memory is dumped first, followed by the memory 
of processes and global sections, in units called Logical Memory Blocks (LMBs). An LMB consists 
of a 1-block header, followed by a hole table (one or more blocks in length), followed by the actual 
memory contents. The hole table describes the ranges of virtual addresses not written for the section 
within the LMB. 
 
The complete set of possible LMB types, and their order in a selective dump, is as follows: 
 
1. PT Space (the page table for all of system space (S0/S1 and S2)). 

 
2. S0/S1 space (32-bit system space) 

 
3. S2 space (64-bit system space) 

 
4. RAD-specific data (virtual pages in S0/S1 and S2 space that map to different physical pages in 

systems that support Resource Affinity Domains). There can be multiple RAD-specific LMBs in a 
dump. 

 
5. Key Process page tables (one for each key process). An explanation of key processes follows 

later in this article. 
 

6. Key Process memory (one for each key process). For each process, the page table LMB and 
memory LMB are written together as a pair. 

 
7. Key Global pages (any global pages in the working set of at least one key process at the time of 

the system crash). 
 

8. Non-key Process page tables (one for each non-key process) 
 

9. Non-key Process memory (one for each non-key process) 
 

10. Remaining Global pages (any global pages in the working set of a process at the time of the 
system crash that were not included in the “Key Global pages” LMB). 
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In contrast to physical dumps, it is impossible to determine exactly the size needed for an 
uncompressed or raw selective dump. For analysis to be possible, the dump file must be large enough 
to contain all system space plus the current process on the crash CPU. Best results are obtained if the 
dump file is large enough to accommodate all key processes and key global pages, as discussed in 
the next section. A compressed selective dump requires a dump file about half this size, but, as with 
physical dumps, the exact size depends on the contents of memory. The LMB headers and hole table 
blocks are not compressed. Dump compression is described later in this article. 
 
Incidentally, process dumps use a format similar to selective dumps. Process dumps contain two 
LMBs – one for all process address space (both page tables and memory), and one for all system 
space memory that is pertinent to the process being dumped. Process dumps do not contain error logs 
or space reserved for trap information. Instead, process dumps include blocks following the dump 
header that contain an invocation context block and other data. This information provides a snapshot 
of the processor registers at the time of the failure. 
 
Key Processes 
 
When a dump is analyzed, the necessary information is usually found in the address space of the 
process that was current at the time of the system crash, or in the address space of a process that 
contains important system data structures. For this reason, certain processes, known as key 
processes, are dumped first in a dump. These processes, and the order in which they are dumped, 
are as follows: 
 

• The current process on the CPU where the system crash was initiated 
• The SWAPPER process 
• Current processes on any CPUs that did not respond to the request from the crash CPU to 

perform a CPUEXIT BUGCHECK instruction  
• Current processes on any other CPUs 
• Processes registered as priority processes by the SYSMAN DUMP_PRIORITY ADD command  
• Processes designated by Hewlett-Packard to be key processes. This list of processes is built 

into the BUGCHECK code and comprises the following: 
MSCPmount 
AUDIT_SERVER 
NETACP 
NET$ACP 
REMACP 
LES$ACP 
SHADOW_SERVER 

• Processes in any miscellaneous wait state: for example, RWAST, MUTEX, WTBYT, and so on.  
 
SYSMAN DUMP_PRIORITY ADD commands can be entered directly by the system manager or can be 
included in the installation procedures of layered products and third-party products. Careful use of 
SYSMAN DUMP_PRIORITY ADD commands to include all key processes ensures that a selective dump 
includes useful data first. This prevents the dump file being filled with the memory contents of 
processes that have no relevance to the system crash.  
 
Dump Compression 

 
Dump compression was introduced in OpenVMS Alpha Version 7.0 and has been enhanced since 
then, most recently in Version 7.3-1. It does not use an established compression algorithm, but one 
designed to be most effective with common OpenVMS memory patterns, and which can be used by 
the BUGCHECK code. 
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Following the dump header and error logs, a compressed dump contains a compression map. This is 
a sequence of quadwords, each describing up to 128 blocks of the compressed dump. (In a selective 
dump, additional quadwords describe the LMB headers and the hole tables for each LMB. These 
quadwords can easily be identified because bit 63, DMP$V_NOCOMP, is set). 
 
The data in each quadword includes the final raw VBN represented by this compression map entry, 
the number of compressed blocks written for this entry, and flags such as DMP$V_NOCOMP. When 
SDA is reading the dump file, it scans the compression map looking for the entry containing the raw 
VBN it wants. Having counted the compressed blocks written for preceding entries, SDA can then 
read the exact set of blocks containing the raw VBN of interest and decompress just those blocks to 
get to the raw data. 
 
The BUGCHECK code attempts to compress four blocks of raw data at a time using the algorithms 
described below. The compressed data is appended to a buffer until the maximum size of a 
compressed section (127 blocks) is reached.  
 
The BUGCHECK code looks for the following byte patterns: 
 

• Repeated sequences of a single value (DMP$K_REPEAT) 
• An ascending sequence of values (DMP$K_INCREMENT) 
• A descending sequence of values (DMP$K_DECREMENT) 
• A sequence containing a limited set of values (up to 2, 4, 8, 16, 32, or 64) 

(DMP$K_REENCODE_n, n=1-6) 
• A sequence where a small number of values (1-7) is dominant (DMP$K_BITMAP_n, n=1,3,7) 
• A sequence where no compression is possible (DMP$K_NOCOMP) 

 
For each byte pattern, the compressed data has a fixed header of three bytes. The first byte contains 
the pattern type (DMP$K_xxx) and some flag bits (to be described later). The second and third bytes 
contain a word count of the number of raw bytes represented in the compressed section. 
 
For DMP$K_REPEAT, DMP$K_INCREMENT, and DMP$K_DECREMENT, a fourth byte contains the 
first character of the sequence. A minimum sequence of 16 bytes is required for the pattern to be 
recognized. If successive complete DMP$K_REPEAT sections are found for the same byte value, these 
are merged to a maximum raw size of 64 blocks.  
 
For DMP$K_NOCOMP, the sequence of raw byte values follows the header. If successive complete 
DMP$K_NOCOMP sections are found, these are merged, also to a maximum raw size of 64 blocks. 
If two successive 64-block DMP$K_NOCOMP sections occur, the 3-byte headers are dropped, the 
entire 128 blocks are written to the dump file, and the DMP$V_UNCOMP bit is set in the compression 
map entry. Without this optimization, the compressed dump would end up being larger than the raw 
dump if memory patterns are such that little or no compression is possible. 
 
DMP$K_REENCODE_n sections contain the same 3-byte header, followed by bytes containing the 
values that occur in the sequence (from 2**(n-1)+1 to 2**n such values). So that SDA can determine 
the end of the set of values, if the full set (2**n) is not used, the last value is always hex FF, even if it 
does not occur in the sequence. To understand how re-encode compression works, consider a 
sequence of bytes that contains only the hex values 17, 31, 65, A4, and E9. This can be compressed 
as a DMP$K_REENCODE_3 section, using binary 000 for every 17, binary 001 for every 31, 010 
for 65, 011 for A4, and 100 for E9. The five raw values, followed by hex FF, are written to the 
dump, followed by as many 3-bit groups as there were bytes in the raw data. If a sequence of 100 
bytes containing just these five values was found, its compressed size would be 3+6+(100*3+7)/8 = 
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47 bytes. (That’s three bytes of fixed header, six bytes of raw values including the hex FF terminator, 
and 100 3-bit groups for the actual re-encoded values, rounded up to the next complete byte.) 
 
DMP$K_BITMAP_n sections contain the 3-byte header, followed by bytes containing the dominant 
values that occur in the sequence (exactly n such values). There is no need to have a filler value, as 
do DMP$K_REENCODE_n sections, because any sequence of bytes that contains fewer than seven 
distinct values is more efficiently compressed using re-encoding. Following the set of dominant values 
is a set of 1-bit, 2-bit, or 3-bit groups, with one group for each byte in the raw data. The value in 
each group is the offset in the set of dominant bytes unless it is the maximum value for the bit group 
(1, 3, or 7). In that case, the value indicates that some other less common (latent) value occurs in the 
raw data. These latent values follow the bit groups in the same order they occur in the raw data. The 
number of bytes required to contain the compressed data using bitmap compression depends on the 
repeat counts for each dominant value. 
 
The BUGCHECK code looks first for repeat, increment, or decrement sequences, temporarily ignoring 
intervening bytes. Having identified such a sequence, it then scans the ignored bytes, counting 
occurrences of all possible values. Using the collected statistics, it decides if a re-encoded 
compression is possible or if a bitmap compression would produce a better result. If no approach will 
compress the data, it becomes a DMP$K_NOCOMP section. The result is written to the dump, 
followed by any previously-identified repeat, increment, or decrement section. 
 
But compression does not end here. In many situations, the compressed data is itself compressible, so 
the BUGCHECK code attempts further compression, up to four times. While it is rare to perform the 
maximum number of compression passes, two or three passes are common, especially with certain 
patterns that occur in page tables and the PFN database. Flag bits in the first byte of the  
3-byte header indicate to SDA when it has completely decompressed a section.  
 
 
File and Unwind Data 

 
Beginning with the OpenVMS release that follows Version 8.2, additional data is appended to the 
dump after the system reboots. However, the actual dump file cannot be modified. For example, when 
a dump is written to a page file, any unused space in the dump file is made available for paging as 
soon as the system reboots.  Therefore, the additional data is appended to the copy when the dump is 
copied by SDA. The appended data comprises the following: 
 
1. File identification to file name translation data. Collection of this data allows SDA to display file 

names when analyzing dumps for the following commands: 
SHOW PROCESS /CHANNELS 
SHOW GLOBAL_SECTION_TABLE 
SHOW MEMORY /FILES 

 
2. Unwind tables for images activated by any processes. OpenVMS I64 uses unwind tables to 

describe when and where registers have been saved during the execution of a procedure. The 
unwind tables for an activated image are in pageable sections. As a result, the tables and the 
data structures that describe them have often been unavailable in system dumps. Their absence 
affects the SHOW CALL command, preventing a complete analysis of all call frames if any frame 
is for a PC in an activated image. Collection of this data allows SDA to access the data it needs 
to display such call frames. 

 
The SHOW UNWIND address command also uses the collected data if the given address is for a 
PC in an activated image. However, the SHOW PROCESS /UNWIND [=ALL] command can still 
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fail because it also relies on the data structures that describe the in-memory unwind tables; those 
cannot be reconstructed after the crash.  
 
It is worth noting that because the unwind tables for loaded executive images are always 
resident, the SHOW UNWIND [/ALL] command is never affected. Likewise, SHOW CALL can 
always display call frames whose PC is in a loaded executive image. 

 
By default, a copy of an original dump, as written at the time of the system crash, includes  collection 
data. You can execute COPY /NOCOLLECT to override this. Conversely, a copy of a dump 
previously copied by SDA without collection (COPY /NOCOLLECT) does not include collection data, 
but COPY /COLLECT can be used to override this. Copying a dump that already contains an 
appended collection will always include that collection. 
 
For all file and unwind data to be collected successfully, all disks that were mounted at the time of the 
system crash should be remounted and accessible to the process running SDA. SDA is usually invoked 
early during startup to save the contents of the dump, for example by defining the logical name 
CLUE$SITE_PROC to point to an SDA command procedure that includes a COPY command. If some 
disks are not mounted until a batch job is run, some file or unwind data might not be collected 
successfully. To avoid this, use the COPY/NOCOLLECT command in the CLUE$SITE_PROC command 
procedure; then, once all disks have been mounted, execute an additional COPY/COLLECT 
command to save file and/or unwind data. 
 
 
Dump Off System Disk (DOSD) 

 
On many systems, disk space can be at a premium, especially on a cluster-common system disk. For 
this reason, OpenVMS on both Alpha and I64 provides the ability to write system dumps to a dump 
file on a disk other than the system disk. To use this feature, the system manager must perform the 
following setup steps: 
 
1. Set the “dump off system disk” (DOSD) bit in the SYSGEN parameter DUMPSTYLE. This is bit 2 

(value 4). 
 

2. Put the name of the disk to be used in the DUMP_DEV environment variable. On Alpha, this is 
done with a SET DUMP_DEV command at the console prompt. On I64, it is done using the 
command procedure SYS$MANAGER:BOOT_OPTIONS.COM. If there are multiple paths to the 
dump disk, all paths should be included in DUMP_DEV.  The disk cannot be a member of a 
shadow set or part of a volume set. 

 
3. On the desired dump disk, create the file [SYSn.SYSEXE]SYSDUMP.DMP using the SYSGEN 

CREATE /SIZE=size command. The file must be in the same system root that is used to boot the 
system. Using SYSGEN to create the dump file ensures that, even if the file is not contiguous, it 
will not be so badly fragmented that an extension header is required to record its location on the 
disk. 

 
When the system crashes, if the BUGCHECK code finds the DOSD bit set in DUMPSTYLE, it attempts 
to access each entry in DUMP_DEV in turn and tries to locate the dump file, using the same primitive 
file system that is available to SYSBOOT when the system is booted. Once the BUGCHECK code finds 
the dump file, it writes the dump in exactly the same way as it does for a system disk dump file. 
 
The error log dump file is always located on the system disk because SYSINIT must access it when the 
system reboots. The BUGCHECK code uses DUMP_DEV to locate alternate paths to the system disk if 
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it failed over to a different path while OpenVMS was running. For this reason, if there is more than 
one path to the system disk, DUMP_DEV should include all paths. If the system disk is a shadow set, 
the BUGCHECK code attempts to write the contents of the error log buffers to all members of the 
shadow set. Therefore, DUMP_DEV should include all paths to all members of the system disk shadow 
set. 
 
Unfortunately, on Alpha there is a limit to the number of paths that can be included in DUMP_DEV  
because the console provides only a single fixed-length buffer for the list. On some Alpha platforms, 
only a single device can be specified; on others, there is room for 4 to10 devices, depending on their 
type. As a result, the system manager must determine which devices to include. At a minimum, all 
paths to the dump device should be included if DOSD is being used.  As many paths to the system 
disk as possible should then be added; in the case of a shadow set, start with the member that is 
usually the master – the member used in BOOTDEF_DEV. 
 
On I64, the limit on the number of paths is 99, so there should be no difficulty in defining all paths to 
the dump disk and all paths to all members of the system disk shadow set. 
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For more information  
For more information about the creation and analysis of system crash dumps, refer to the following 
OpenVMS manuals: 
 
HP OpenVMS System Analysis Tools Manual  
http://h71000.www7.hp.com/doc/82FINAL/6549/6549PRO.HTML  
 
HP OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and Complex Systems  
Refer to the chapter titled “Managing Page, Swap, and Dump Files.” 
http://h71000.www7.hp.com/doc/82FINAL/aa-pv5nj-tk/aa-pv5nj-tk.HTMl  
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