
The Development Of A High Performance VAX 6000 Emulator – Robert Boers

OpenVMS Technical Journal V7

The Development Of A High Performance VAX 6000 Emulator
Dr. Robert Boers, CEO, CTO, Software Resources International S.A.

Overview
Software Resources International (SRI) develops commercial emulators for VAX hardware. Designed
as a hardware abstraction layer (HAL), a VAX emulator is essentially a software mathematical model
of VAX hardware. If the HAL is accurate enough, the original VAX operating systems and applications
can be executed on it. This enables the use of unmodified VAX software on any platform for which
such a HAL is available, thereby avoiding the cost and risks of using aged VAX hardware. This article
describes the development of a HAL for the large VAX SMP systems, the ultimate performance step in
replacing existing VAX systems.

Introduction
Since the advent of commercial computing, users have sought to simultaneously take advantage of
new hardware advances while preserving their existing applications. Computer manufacturers like
Digital Equipment Corporation (DEC) strove for backwards compatibility, but keeping systems
compatible at the hardware level limited the innovation that could be applied as larger word lengths,
more address space, and more sophisticated operating systems became available. When
applications are written in a higher-level language, the amount of required changes can be limited by
compiler compatibility, but the source code has to be available. Translating binary application code
requires translated system calls1 and is limited to application code.

Hardware Emulation
The ultimate way to support legacy software is hardware emulation. The computer’s CPU interprets
binary instructions. It does not matter whether this interpretation is done directly by hardware or by
software routines, as long as the ultimate result is same. This is simple in principle, but in reality this
solution is complex.

1 Examples of such translators are the FX32 I86-to-Alpha converter or the VAX-to-Alpha and Alpha-to-Itanium converters for OpenVMS
applications.

© Copyright 2006 Hewlett-Packard Development Company, L.P 1

The Development Of A High Performance VAX 6000 Emulator – Robert Boers

A computer contains not only a CPU, but also peripherals, interconnect hardware, clocks, and many
other elements, each of which require a precise representation. The exact hardware component
functionality must be recreated in software models, as well as the correct interaction in time between
those component models. The result is an accurate software model of computer hardware, or a
hardware abstraction layer (HAL), perceived by the legacy software as the original hardware system.

While exact hardware emulation is difficult to achieve, the rewards are significant. If the HAL is
accurate enough, the hardware diagnostics and hardware verification tools can be used for testing.
The emulator becomes independent of a particular legacy operating system; hence in principle it can
run any code that ran on the original hardware. When the HAL is structured as a library of
components representing hardware elements, it can be configured in real time into any system
configuration for which the emulated elements are available.

Note that HALs can be found in most operating systems, where they make the work of an operating
system designer easier by masking variations of the underlying CPUs, minor hardware variations, and
so forth. In the case of a hardware system emulator, the HAL is not a thin layer of code requiring few
system resources, but a collection of emulated system components with much higher complexity. Such
components — and in particular the emulated CPU — require a large amount of computer
horsepower. Usable emulators of computer hardware are only feasible due to the much higher
performance of the systems on which such emulators are executed, as compared to the original
hardware.

The emulation ratio (that is, the number of instructions of the host system required to implement one
instruction of the simulated system), is a good metric by which to understand the cost of system
emulation. Each emulated component contributes in its own way to the overall performance, so there
is no uniform ratio for all components. In practice, we use VUPs (VAX Units of Processing) to compare
the performance of our CHARON-VAX emulator products. Tests show that the average emulation ratio
measured this way is determined mainly by the efficiency of the simulated components and the host
CPU instruction set. The compatibility of host system floating point formats with the legacy hardware
influences mathematical performance. A fast thread switching capability in the host system and low
memory latency are also important, since emulated CPU components are usually represented as host
memory locations.

For example, a VAX 4000 model 90 uses a master clock of 71 MHz for 32 VUPs, while a basic
version of CHARON-VAX on a 3 GHz P4 yields approximately 20 VUPs, resulting in an emulation
ratio of about 60. Unfortunately, because of the sequential nature of the CPU emulation, executing a
HAL on a host system with a larger word length (for instance, emulating a 32-bit VAX system on a 64-
bit host) does not provide additional performance, while a shorter host word length carries a heavy
performance penalty.

20 VUPs is an acceptable performance for home use and low-end commercial VAX emulation, and in
addition to several freeware and hobbyist implementations, SRI’s low-end CHARON-VAX/XM product
is a bestseller. However, the majority of the business-critical VAX systems still in operation have much
higher performance requirements. Single-CPU VAX systems deliver up to 50 VUPs and VAX SMP
systems (such as the VAX 7860) can deliver close to 300 VUPs. Replacing such systems with a simple
interpretive emulator would require a host system with a clock frequency of 40–50 GHz, which is
simply not feasible.

Advanced CPU Emulation (ACE)
In 2002, Software Resources International developed advanced CPU emulation (ACE), which allows
us to break the 20 VUPs barrier on currently available I86 architecture using a method similar to the
way hardware CPUs use multiple pipelines and look-ahead optimization to improve performance.

© Copyright 2006 Hewlett-Packard Development Company, L.P 2

The Development Of A High Performance VAX 6000 Emulator – Robert Boers

Each CPU is represented by two process threads. The first thread analyzes a VAX page of instructions
and data, calculates potential future page references, and reorders execution instructions to optimize
the use of the host system.2 As a result, a much larger VAX page is created and buffered.

The second thread executes the processed page, which requires several refinements. Page processing
involves a delay that can be intolerably long when driver code is executed, so ACE includes the
original VAX page code in the extended page and uses it until the other thread has completed
processing. Self-modifying code (for instance, in Oracle RdB) is handled by trapping write operations
to VAX instructions, and the instruction sequence is reoptimized. It took a year to tune the prefetch
and buffering mechanisms to reach consistently high performance for all VAX system architectures.
AXE (the original VAX CPU verification test suite) was used to verify the correct operation of ACE.

The ACE technology allowed us to develop a high performance single-CPU VAX emulator that can
deliver up to 80 VUPs on I86 platforms. It is interesting to note that, in spite of their lower CPU
frequency, the AMD Opteron-based systems perform better than the Intel Xeon platforms. Opteron
CPUs have an on-chip memory controller running at the CPU clock speed, which provides a very low
memory latency. They also excel in fast floating point processing. The ACE- based products (sold
under the CHARON-VAX Plus family name) range from the MicroVAX 3600 (running at 30 times its
original speed) to the 512 MB VAX 4100-108, thereby covering most single-CPU VAX systems that
are still in operation.

We had exceeded single VAX CPU performance by a big margin. The last hurdle was to reach
performance sufficient to replace VAX hardware of any performance range. Following the VAX
hardware development history, we had to emulate an SMP VAX system. This has implications for the
emulator host system specifications, as SMP system emulation requires running a CPU emulator “N”
times. The CPU emulation component, driven by the operating system that it is executing, takes all the
resources it can get. Hence each emulated CPU requires a dedicated host CPU. The other emulator
components cause a much lower load.3 Therefore, emulating for instance a three-CPU VAX system
requires a four-CPU host system.

We started developing a VAX SMP emulator at the end of 2003. At that time, there were not many
four-way or eight-way CPU systems on the market, and nearly all had clock frequencies far below that
of a common 1 GHz single-CPU system. We needed to emulate at least 3–6 VAX CPUs to make a
significant step forward.

Modifying the ACE Design
The functionality of a VAX emulator depends on the VAX model that it represents, but its performance
depends on the host system. As shown in the MicroVAX 3600 example, emulating a VAX does not
mean it can only run at its “native” speed. For our VAX SMP implementation, we narrowed our choice
to either the VAX 6000 or the VAX 7000 family. The VAX 7000 LSB backbone and its attached buses
would be much more complex to emulate, so we chose the VAX 6000, which has a well-documented
XMI bus. Its synchronous operation and its fixed number of slots (14, of which 10 are available for
CPUs or peripheral controllers) allows straightforward configuration. While one team developed the
SMP CPU implementation on a skeleton XMI bus, another team focused on the memory subsystem,
Ethernet, and disk/tape controllers.

The original ACE implementation was synchronized with its VAX code execution, but with multiple
CPUs the page reordering delays were too long to be acceptable. Properly synchronizing the
emulated CPUs with the XMI bus involves strict timing constraints. The solution was the implementation
of an asynchronous ACE mechanism. As a nice side effect, this new mechanism reduced emulated
VAX interrupt latency. The field test experience was so positive that our single-CPU emulator products
adopted this method as well.

2 This rather complex part is host system–specific; the rest of the emulator is fully portable.
3 Consequently, our high performance single-CPU VAX emulators alsorequire a dual-CPU host system.

© Copyright 2006 Hewlett-Packard Development Company, L.P 3

The Development Of A High Performance VAX 6000 Emulator – Robert Boers

The VAX 6000 emulator presented unique challenges. For example, every node on the XMI bus is
capable of setting up an interrupt request, and each of them is able to respond to that interrupt
request, becoming an interrupt server. Unlike single-CPU systems, where the CPU is mostly in control,
peripheral nodes can specify which nodes are eligible to become interrupt servers.

The SMP VAX emulator project borrowed components from the existing products but produced many
improvements as well. Asynchronous ACE, the most complex component, took only a year to develop
by testing on an existing MicroVAX emulator. The XMI MSCP controller was developed the same
way. In the SMP project we rewrote most of the emulator core, establishing a new code base for all
our emulator products.

Implementing Multi-CPU Emulation
Once the XMI bus behaved properly, the VAX 6610 (single-CPU) emulator posed few problems.
However, the step up to multi-CPU emulation required more design work. When multiple CPUs
execute the same code, they can share the same VAX page that is currently being analyzed for
reordering. For efficiency, each CPU has its own page processor thread. When a thread starts a
page-reordering, other threads should back off. If a location is written in a page, its modified version
should be invalidated, but another CPU might still be working on it. This required the development of
an additional level of synchronization for the VAX page processing.

The solution results in heavily-threaded application code,4 so the host operating system must be
capable of efficient thread switching. To avoid catastrophic failure, CHARON-VAX constantly watches
its resources. If there are not enough system resources available to run the VAX page analysis
process, it slows down in a ”safe” mode to prevent a brutal interruption of the services that the VAX
operating system needs to keep running.

A well-functioning VAX 6000 SMP emulator prototype was not yet the result we wanted. Our goal
was to create a product family, CHARON-VAX/66x0, capable of replacing all large single-CPU and
SMP VAX systems, including large configurations with multiple Ethernet controllers, disks, and several
gigabytes of memory, with higher performance.

Our emulation of the standard VAX 6000 hardware was too limited. The largest VAX 6000 memory
module was 128 MB, and the KDM70 disk controller supported only eight devices. With only 14
slots to use, and using up one for each VAX CPU, memory board, disk controller, or Ethernet adapter,
we could not create, for instance, a six-CPU, 2 GB VAX with 200 disks.

Designing New “Hardware”
Initially we emulated the VAX XMI-to-BI adapter for additional peripheral support (we actually built a
prototype). But a more elegant solution emerged. We decided to become “hardware engineers” and
design higher-density memory boards and larger disk controllers than the VAX 6000 hardware ever
had. We estimated how 256-, 512- or 1024-MB VAX 6000 memory boards would have looked if
Digital Equipment Corporation had designed them5 and we emulated the boards.

We designed the XMI KDM70 disk controller the same way, implementing the MSCP protocol,
through which it communicates with the VAX operating system. MSCP devices are autonomous units
that inform the operating system of their capabilities. By modifying its protocol responses, we made
the controller capable of supporting several thousand disk drives, but because each drive requires a
certain amount of buffer space, we limited the number to a more practical 256. Also, we added
support for SCSI drives, which the VAX sees as MSCP drives. Similarly, we added support for SCSI
tape drives to the modified KDM70.6

4 The CHARON-VAX/6660 emulator uses about 30 parallel threads, including two for each emulated CPU.
5 If they were designed, they never became products.
6 Data-only, because the VAX 6000 does not know how to boot from a TA tape drive.

© Copyright 2006 Hewlett-Packard Development Company, L.P 4

The Development Of A High Performance VAX 6000 Emulator – Robert Boers

To our delight, OpenVMS accepted our modifications without complaining or requiring new drivers.
In this way, we produced an SMP VAX emulator that behaves like a 3.5 GB VAX 6000. (The last 0.5
GB is occupied by the XMI I/O space.) For the current products, the emulated memory is limited to 2
GB, and it is easy to configure. You specify the memory size, then the emulator calculates the number
and size of the memory boards for the four preallocated XMI memory slots. Even in a six-CPU VAX
configuration with four memory boards, four XMI slots remain. These are typically used for one
KDM70 and three Ethernet adapters. Each drive can be 8 GB or larger, and we have not seen a user
exceed the limit of 256 drives, but a second controller could be configured at the expense of one
Ethernet adapter.

The result is a flexible product that can provide fast one-to-six CPU VAX emulation on suitable
hardware. Using four 275 dual-core Opteron CPUs in a four-way DL585 (effectively eight cores), the
emulator delivers nearly 500 VUPs. We tried to emulate a seven-CPU VAX 6000-670 on an eight-
way server, but there was no LMF key for that unusual number of VAX CPUs!

Transfer Licenses
A non-technical aspect of VAX emulation should be noted, involving the legal right to run a licensed
VAX operating system and layered products. A few years ago, after we passed the original hardware
certification tests, Compaq established transfer licenses for CHARON-VAX, which authorize the
transfer of an existing OpenVMS version and specific listed layered software products to the
CHARON-VAX emulator, whereby the existing LMF keys can be copied. The transfer licenses have
order numbers and can be obtained from HP.

If a user upgrades from a small hardware VAX to a CHARON-VAX system providing a larger VAX
system, the OpenVMS or layered products license units copied from the original system are not
sufficient. As more customers take the opportunity to consolidate several hardware systems in one
powerful emulator, this problem will become more common. To resolve this, we have an agreement
with HP to provide the base transfer licenses and the operational licenses for OpenVMS, DECnet, and
clustering, depending on the configuration of CHARON-VAX/66x0 products.

The development of three generations of VAX emulators has given us insight into how to design
commercial emulators. The CHARON emulator core and our approach to emulator design are not
restricted to VAX emulation. Our legacy product, CHARON-11, is selling in increasing numbers. We
also implemented a prototype of an HP 3000 emulator, but we have not yet pursued product
development. The emulation technology can also be used to economically replace embedded custom
computers, and we have been approached by companies to do so. Concerning the CHARON
product family, after our successful implementation of 16- and 32-bit systems emulation, we have
started work on emulating 64-bit systems, and a prototype booted OpenVMS/Alpha succesfully. Stay
tuned.

For more information:
For more information on Software Resources International or the CHARON-VAX family, visit our
website at www.softresint.com or contact us at the address shown below. Dr. Boers can be reached
via e-mail at: r_boers@softresint.com.

Software Resources International S.A.
Ch. DuPont-Du-Centenaire 109
1228 Plan-les-Ouates
Switzerland
Telephone: (41) 22 794 1070
FAX: (41) 22 794 1073
www.softresint.com

© Copyright 2006 Hewlett-Packard Development Company, L.P 5

	The Development Of A High Performance VAX 6000 Emulator
	Overview
	Introduction
	Hardware Emulation
	Advanced CPU Emulation (ACE)
	Modifying the ACE Design
	Implementing Multi-CPU Emulation
	Designing New “Hardware”
	Transfer Licenses
	For more information:

